MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlknlem2 Structured version   Visualization version   GIF version

Theorem eleclclwwlknlem2 29311
Description: Lemma 2 for eleclclwwlkn 29326. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlkn1.w 𝑊 = (𝑁 ClWWalksN 𝐺)
Assertion
Ref Expression
eleclclwwlknlem2 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐺   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑘,𝑚,𝑛   𝑥,𝑚,𝑛
Allowed substitution hints:   𝐺(𝑥,𝑘)   𝑁(𝑥,𝑘)   𝑊(𝑥,𝑘,𝑚,𝑛)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)

Proof of Theorem eleclclwwlknlem2
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑘 ∈ (0...𝑁))
21anim1i 615 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)))
32adantr 481 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)))
4 simpr 485 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑋 = (𝑥 cyclShift 𝑘))
54adantr 481 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → 𝑋 = (𝑥 cyclShift 𝑘))
65anim1i 615 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
7 erclwwlkn1.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
87eleclclwwlknlem1 29310 . . 3 ((𝑘 ∈ (0...𝑁) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → ((𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
93, 6, 8sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
10 eqid 2732 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknbp 29285 . . . . . . . . . . 11 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
1211, 7eleq2s 2851 . . . . . . . . . 10 (𝑥 ∈ 𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
13 fznn0sub2 13607 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈ (0...𝑁))
14 oveq1 7415 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((♯‘𝑥) − 𝑘) = (𝑁 − 𝑘))
1514eleq1d 2818 . . . . . . . . . . . 12 ((♯‘𝑥) = 𝑁 → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ↔ (𝑁 − 𝑘) ∈ (0...𝑁)))
1613, 15imbitrrid 245 . . . . . . . . . . 11 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1716adantl 482 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1812, 17syl 17 . . . . . . . . 9 (𝑥 ∈ 𝑊 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1918adantl 482 . . . . . . . 8 ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2019com12 32 . . . . . . 7 (𝑘 ∈ (0...𝑁) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2120adantr 481 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2221imp 407 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
2322adantr 481 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
24 simpr 485 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊))
2524ancomd 462 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (𝑥 ∈ 𝑊 ∧ 𝑋 ∈ 𝑊))
2625adantr 481 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥 ∈ 𝑊 ∧ 𝑋 ∈ 𝑊))
2723, 26jca 512 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥 ∈ 𝑊 ∧ 𝑋 ∈ 𝑊)))
28 simpll 765 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ Word (Vtx‘𝐺))
29 oveq2 7416 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
3029eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3130eqcoms 2740 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3231adantl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3332biimpa 477 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(♯‘𝑥)))
3428, 33jca 512 . . . . . . . . . . . 12 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
3534ex 413 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3612, 35syl 17 . . . . . . . . . 10 (𝑥 ∈ 𝑊 → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3736adantl 482 . . . . . . . . 9 ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3837com12 32 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3938adantr 481 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
4039imp 407 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
414eqcomd 2738 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → (𝑥 cyclShift 𝑘) = 𝑋)
4241adantr 481 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (𝑥 cyclShift 𝑘) = 𝑋)
43 oveq1 7415 . . . . . . . 8 (𝑋 = (𝑥 cyclShift 𝑘) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
4443eqcoms 2740 . . . . . . 7 ((𝑥 cyclShift 𝑘) = 𝑋 → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
45 elfzelz 13500 . . . . . . . 8 (𝑘 ∈ (0...(♯‘𝑥)) → 𝑘 ∈ â„€)
46 2cshwid 14763 . . . . . . . 8 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ â„€) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4745, 46sylan2 593 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4844, 47sylan9eqr 2794 . . . . . 6 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) ∧ (𝑥 cyclShift 𝑘) = 𝑋) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4940, 42, 48syl2anc 584 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
5049eqcomd 2738 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → 𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)))
5150anim1i 615 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
527eleclclwwlknlem1 29310 . . 3 ((((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥 ∈ 𝑊 ∧ 𝑋 ∈ 𝑊)) → ((𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
5327, 51, 52sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚))
549, 53impbida 799 1 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋 ∈ 𝑊 ∧ 𝑥 ∈ 𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  âˆƒwrex 3070  â€˜cfv 6543  (class class class)co 7408  0cc0 11109   − cmin 11443  â„€cz 12557  ...cfz 13483  â™¯chash 14289  Word cword 14463   cyclShift ccsh 14737  Vtxcvtx 28253   ClWWalksN cclwwlkn 29274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-fl 13756  df-mod 13834  df-hash 14290  df-word 14464  df-concat 14520  df-substr 14590  df-pfx 14620  df-csh 14738  df-clwwlk 29232  df-clwwlkn 29275
This theorem is referenced by:  eleclclwwlkn  29326
  Copyright terms: Public domain W3C validator