MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlknlem2 Structured version   Visualization version   GIF version

Theorem eleclclwwlknlem2 30080
Description: Lemma 2 for eleclclwwlkn 30095. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlkn1.w 𝑊 = (𝑁 ClWWalksN 𝐺)
Assertion
Ref Expression
eleclclwwlknlem2 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐺   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑘,𝑚,𝑛   𝑥,𝑚,𝑛
Allowed substitution hints:   𝐺(𝑥,𝑘)   𝑁(𝑥,𝑘)   𝑊(𝑥,𝑘,𝑚,𝑛)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)

Proof of Theorem eleclclwwlknlem2
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑘 ∈ (0...𝑁))
21anim1i 615 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
32adantr 480 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
4 simpr 484 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑋 = (𝑥 cyclShift 𝑘))
54adantr 480 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑋 = (𝑥 cyclShift 𝑘))
65anim1i 615 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
7 erclwwlkn1.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
87eleclclwwlknlem1 30079 . . 3 ((𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)) → ((𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
93, 6, 8sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
10 eqid 2737 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknbp 30054 . . . . . . . . . . 11 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
1211, 7eleq2s 2859 . . . . . . . . . 10 (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
13 fznn0sub2 13675 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ (0...𝑁))
14 oveq1 7438 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((♯‘𝑥) − 𝑘) = (𝑁𝑘))
1514eleq1d 2826 . . . . . . . . . . . 12 ((♯‘𝑥) = 𝑁 → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ↔ (𝑁𝑘) ∈ (0...𝑁)))
1613, 15imbitrrid 246 . . . . . . . . . . 11 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1716adantl 481 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1812, 17syl 17 . . . . . . . . 9 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1918adantl 481 . . . . . . . 8 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2019com12 32 . . . . . . 7 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2120adantr 480 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2221imp 406 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
2322adantr 480 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
24 simpr 484 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋𝑊𝑥𝑊))
2524ancomd 461 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥𝑊𝑋𝑊))
2625adantr 480 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥𝑊𝑋𝑊))
2723, 26jca 511 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)))
28 simpll 767 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ Word (Vtx‘𝐺))
29 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
3029eleq2d 2827 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3130eqcoms 2745 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3332biimpa 476 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(♯‘𝑥)))
3428, 33jca 511 . . . . . . . . . . . 12 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
3534ex 412 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3612, 35syl 17 . . . . . . . . . 10 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3736adantl 481 . . . . . . . . 9 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3837com12 32 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3938adantr 480 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
4039imp 406 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
414eqcomd 2743 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → (𝑥 cyclShift 𝑘) = 𝑋)
4241adantr 480 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 cyclShift 𝑘) = 𝑋)
43 oveq1 7438 . . . . . . . 8 (𝑋 = (𝑥 cyclShift 𝑘) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
4443eqcoms 2745 . . . . . . 7 ((𝑥 cyclShift 𝑘) = 𝑋 → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
45 elfzelz 13564 . . . . . . . 8 (𝑘 ∈ (0...(♯‘𝑥)) → 𝑘 ∈ ℤ)
46 2cshwid 14852 . . . . . . . 8 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ ℤ) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4745, 46sylan2 593 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4844, 47sylan9eqr 2799 . . . . . 6 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) ∧ (𝑥 cyclShift 𝑘) = 𝑋) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4940, 42, 48syl2anc 584 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
5049eqcomd 2743 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)))
5150anim1i 615 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
527eleclclwwlknlem1 30079 . . 3 ((((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)) → ((𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
5327, 51, 52sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚))
549, 53impbida 801 1 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  cfv 6561  (class class class)co 7431  0cc0 11155  cmin 11492  cz 12613  ...cfz 13547  chash 14369  Word cword 14552   cyclShift ccsh 14826  Vtxcvtx 29013   ClWWalksN cclwwlkn 30043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827  df-clwwlk 30001  df-clwwlkn 30044
This theorem is referenced by:  eleclclwwlkn  30095
  Copyright terms: Public domain W3C validator