MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlknlem2 Structured version   Visualization version   GIF version

Theorem eleclclwwlknlem2 30047
Description: Lemma 2 for eleclclwwlkn 30062. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlkn1.w 𝑊 = (𝑁 ClWWalksN 𝐺)
Assertion
Ref Expression
eleclclwwlknlem2 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐺   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑘,𝑚,𝑛   𝑥,𝑚,𝑛
Allowed substitution hints:   𝐺(𝑥,𝑘)   𝑁(𝑥,𝑘)   𝑊(𝑥,𝑘,𝑚,𝑛)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)

Proof of Theorem eleclclwwlknlem2
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑘 ∈ (0...𝑁))
21anim1i 615 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
32adantr 480 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
4 simpr 484 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑋 = (𝑥 cyclShift 𝑘))
54adantr 480 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑋 = (𝑥 cyclShift 𝑘))
65anim1i 615 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
7 erclwwlkn1.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
87eleclclwwlknlem1 30046 . . 3 ((𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)) → ((𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
93, 6, 8sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
10 eqid 2736 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknbp 30021 . . . . . . . . . . 11 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
1211, 7eleq2s 2853 . . . . . . . . . 10 (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
13 fznn0sub2 13657 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ (0...𝑁))
14 oveq1 7417 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((♯‘𝑥) − 𝑘) = (𝑁𝑘))
1514eleq1d 2820 . . . . . . . . . . . 12 ((♯‘𝑥) = 𝑁 → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ↔ (𝑁𝑘) ∈ (0...𝑁)))
1613, 15imbitrrid 246 . . . . . . . . . . 11 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1716adantl 481 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1812, 17syl 17 . . . . . . . . 9 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1918adantl 481 . . . . . . . 8 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2019com12 32 . . . . . . 7 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2120adantr 480 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2221imp 406 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
2322adantr 480 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
24 simpr 484 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋𝑊𝑥𝑊))
2524ancomd 461 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥𝑊𝑋𝑊))
2625adantr 480 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥𝑊𝑋𝑊))
2723, 26jca 511 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)))
28 simpll 766 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ Word (Vtx‘𝐺))
29 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
3029eleq2d 2821 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3130eqcoms 2744 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3332biimpa 476 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(♯‘𝑥)))
3428, 33jca 511 . . . . . . . . . . . 12 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
3534ex 412 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3612, 35syl 17 . . . . . . . . . 10 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3736adantl 481 . . . . . . . . 9 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3837com12 32 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3938adantr 480 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
4039imp 406 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
414eqcomd 2742 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → (𝑥 cyclShift 𝑘) = 𝑋)
4241adantr 480 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 cyclShift 𝑘) = 𝑋)
43 oveq1 7417 . . . . . . . 8 (𝑋 = (𝑥 cyclShift 𝑘) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
4443eqcoms 2744 . . . . . . 7 ((𝑥 cyclShift 𝑘) = 𝑋 → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
45 elfzelz 13546 . . . . . . . 8 (𝑘 ∈ (0...(♯‘𝑥)) → 𝑘 ∈ ℤ)
46 2cshwid 14837 . . . . . . . 8 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ ℤ) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4745, 46sylan2 593 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4844, 47sylan9eqr 2793 . . . . . 6 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) ∧ (𝑥 cyclShift 𝑘) = 𝑋) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4940, 42, 48syl2anc 584 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
5049eqcomd 2742 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)))
5150anim1i 615 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
527eleclclwwlknlem1 30046 . . 3 ((((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)) → ((𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
5327, 51, 52sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚))
549, 53impbida 800 1 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  cfv 6536  (class class class)co 7410  0cc0 11134  cmin 11471  cz 12593  ...cfz 13529  chash 14353  Word cword 14536   cyclShift ccsh 14811  Vtxcvtx 28980   ClWWalksN cclwwlkn 30010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-hash 14354  df-word 14537  df-concat 14594  df-substr 14664  df-pfx 14694  df-csh 14812  df-clwwlk 29968  df-clwwlkn 30011
This theorem is referenced by:  eleclclwwlkn  30062
  Copyright terms: Public domain W3C validator