MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnlbnd2 Structured version   Visualization version   GIF version

Theorem expnlbnd2 13596
Description: The reciprocal of exponentiation with a mantissa greater than 1 has no lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 13595 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴)
2 simpl2 1188 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ)
3 simpl3 1189 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 < 𝐵)
4 1re 10641 . . . . . . . . . 10 1 ∈ ℝ
5 ltle 10729 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 → 1 ≤ 𝐵))
64, 2, 5sylancr 589 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 < 𝐵 → 1 ≤ 𝐵))
73, 6mpd 15 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ≤ 𝐵)
8 simprr 771 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ (ℤ𝑗))
9 leexp2a 13537 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ≤ 𝐵𝑘 ∈ (ℤ𝑗)) → (𝐵𝑗) ≤ (𝐵𝑘))
102, 7, 8, 9syl3anc 1367 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ≤ (𝐵𝑘))
11 0red 10644 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
12 1red 10642 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 1 ∈ ℝ)
13 0lt1 11162 . . . . . . . . . . . 12 0 < 1
1413a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 1)
1511, 12, 2, 14, 3lttrd 10801 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 0 < 𝐵)
162, 15elrpd 12429 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
17 nnz 12005 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
1817ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
19 rpexpcl 13449 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑗 ∈ ℤ) → (𝐵𝑗) ∈ ℝ+)
2016, 18, 19syl2anc 586 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
21 eluzelz 12254 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
2221ad2antll 727 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ ℤ)
23 rpexpcl 13449 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
2416, 22, 23syl2anc 586 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (𝐵𝑘) ∈ ℝ+)
2520, 24lerecd 12451 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝐵𝑗) ≤ (𝐵𝑘) ↔ (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗))))
2610, 25mpbid 234 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)))
2724rprecred 12443 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑘)) ∈ ℝ)
2820rprecred 12443 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (1 / (𝐵𝑗)) ∈ ℝ)
29 simpl1 1187 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ+)
3029rpred 12432 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → 𝐴 ∈ ℝ)
31 lelttr 10731 . . . . . . 7 (((1 / (𝐵𝑘)) ∈ ℝ ∧ (1 / (𝐵𝑗)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3227, 28, 30, 31syl3anc 1367 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((1 / (𝐵𝑘)) ≤ (1 / (𝐵𝑗)) ∧ (1 / (𝐵𝑗)) < 𝐴) → (1 / (𝐵𝑘)) < 𝐴))
3326, 32mpand 693 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3433anassrs 470 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((1 / (𝐵𝑗)) < 𝐴 → (1 / (𝐵𝑘)) < 𝐴))
3534ralrimdva 3189 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ 𝑗 ∈ ℕ) → ((1 / (𝐵𝑗)) < 𝐴 → ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
3635reximdva 3274 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → (∃𝑗 ∈ ℕ (1 / (𝐵𝑗)) < 𝐴 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴))
371, 36mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(1 / (𝐵𝑘)) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cle 10676   / cdiv 11297  cn 11638  cz 11982  cuz 12244  +crp 12390  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fl 13163  df-seq 13371  df-exp 13431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator