![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfilspd | Structured version Visualization version GIF version |
Description: Simplified version of ellspd 21357 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
ellspd.n | β’ π = (LSpanβπ) |
ellspd.v | β’ π΅ = (Baseβπ) |
ellspd.k | β’ πΎ = (Baseβπ) |
ellspd.s | β’ π = (Scalarβπ) |
ellspd.z | β’ 0 = (0gβπ) |
ellspd.t | β’ Β· = ( Β·π βπ) |
elfilspd.f | β’ (π β πΉ:πΌβΆπ΅) |
elfilspd.m | β’ (π β π β LMod) |
elfilspd.i | β’ (π β πΌ β Fin) |
Ref | Expression |
---|---|
elfilspd | β’ (π β (π β (πβ(πΉ β πΌ)) β βπ β (πΎ βm πΌ)π = (π Ξ£g (π βf Β· πΉ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspd.n | . . 3 β’ π = (LSpanβπ) | |
2 | ellspd.v | . . 3 β’ π΅ = (Baseβπ) | |
3 | ellspd.k | . . 3 β’ πΎ = (Baseβπ) | |
4 | ellspd.s | . . 3 β’ π = (Scalarβπ) | |
5 | ellspd.z | . . 3 β’ 0 = (0gβπ) | |
6 | ellspd.t | . . 3 β’ Β· = ( Β·π βπ) | |
7 | elfilspd.f | . . 3 β’ (π β πΉ:πΌβΆπ΅) | |
8 | elfilspd.m | . . 3 β’ (π β π β LMod) | |
9 | elfilspd.i | . . 3 β’ (π β πΌ β Fin) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ellspd 21357 | . 2 β’ (π β (π β (πβ(πΉ β πΌ)) β βπ β (πΎ βm πΌ)(π finSupp 0 β§ π = (π Ξ£g (π βf Β· πΉ))))) |
11 | elmapi 8843 | . . . . . 6 β’ (π β (πΎ βm πΌ) β π:πΌβΆπΎ) | |
12 | 11 | adantl 483 | . . . . 5 β’ ((π β§ π β (πΎ βm πΌ)) β π:πΌβΆπΎ) |
13 | 9 | adantr 482 | . . . . 5 β’ ((π β§ π β (πΎ βm πΌ)) β πΌ β Fin) |
14 | 5 | fvexi 6906 | . . . . . 6 β’ 0 β V |
15 | 14 | a1i 11 | . . . . 5 β’ ((π β§ π β (πΎ βm πΌ)) β 0 β V) |
16 | 12, 13, 15 | fdmfifsupp 9373 | . . . 4 β’ ((π β§ π β (πΎ βm πΌ)) β π finSupp 0 ) |
17 | 16 | biantrurd 534 | . . 3 β’ ((π β§ π β (πΎ βm πΌ)) β (π = (π Ξ£g (π βf Β· πΉ)) β (π finSupp 0 β§ π = (π Ξ£g (π βf Β· πΉ))))) |
18 | 17 | rexbidva 3177 | . 2 β’ (π β (βπ β (πΎ βm πΌ)π = (π Ξ£g (π βf Β· πΉ)) β βπ β (πΎ βm πΌ)(π finSupp 0 β§ π = (π Ξ£g (π βf Β· πΉ))))) |
19 | 10, 18 | bitr4d 282 | 1 β’ (π β (π β (πβ(πΉ β πΌ)) β βπ β (πΎ βm πΌ)π = (π Ξ£g (π βf Β· πΉ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwrex 3071 Vcvv 3475 class class class wbr 5149 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7409 βf cof 7668 βm cmap 8820 Fincfn 8939 finSupp cfsupp 9361 Basecbs 17144 Scalarcsca 17200 Β·π cvsca 17201 0gc0g 17385 Ξ£g cgsu 17386 LModclmod 20471 LSpanclspn 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-nzr 20292 df-subrg 20317 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lmhm 20633 df-lbs 20686 df-sra 20785 df-rgmod 20786 df-dsmm 21287 df-frlm 21302 df-uvc 21338 |
This theorem is referenced by: matunitlindflem2 36485 |
Copyright terms: Public domain | W3C validator |