![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfilspd | Structured version Visualization version GIF version |
Description: Simplified version of ellspd 21666 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
ellspd.n | ⊢ 𝑁 = (LSpan‘𝑀) |
ellspd.v | ⊢ 𝐵 = (Base‘𝑀) |
ellspd.k | ⊢ 𝐾 = (Base‘𝑆) |
ellspd.s | ⊢ 𝑆 = (Scalar‘𝑀) |
ellspd.z | ⊢ 0 = (0g‘𝑆) |
ellspd.t | ⊢ · = ( ·𝑠 ‘𝑀) |
elfilspd.f | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
elfilspd.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
elfilspd.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
Ref | Expression |
---|---|
elfilspd | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspd.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑀) | |
2 | ellspd.v | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
3 | ellspd.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
4 | ellspd.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | ellspd.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | ellspd.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑀) | |
7 | elfilspd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
8 | elfilspd.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
9 | elfilspd.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ellspd 21666 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
11 | elmapi 8849 | . . . . . 6 ⊢ (𝑓 ∈ (𝐾 ↑m 𝐼) → 𝑓:𝐼⟶𝐾) | |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾 ↑m 𝐼)) → 𝑓:𝐼⟶𝐾) |
13 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾 ↑m 𝐼)) → 𝐼 ∈ Fin) |
14 | 5 | fvexi 6905 | . . . . . 6 ⊢ 0 ∈ V |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾 ↑m 𝐼)) → 0 ∈ V) |
16 | 12, 13, 15 | fdmfifsupp 9379 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾 ↑m 𝐼)) → 𝑓 finSupp 0 ) |
17 | 16 | biantrurd 532 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝐾 ↑m 𝐼)) → (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ (𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
18 | 17 | rexbidva 3175 | . 2 ⊢ (𝜑 → (∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
19 | 10, 18 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 class class class wbr 5148 “ cima 5679 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ∘f cof 7672 ↑m cmap 8826 Fincfn 8945 finSupp cfsupp 9367 Basecbs 17151 Scalarcsca 17207 ·𝑠 cvsca 17208 0gc0g 17392 Σg cgsu 17393 LModclmod 20702 LSpanclspn 20814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19046 df-ghm 19135 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-nzr 20411 df-subrg 20467 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lmhm 20865 df-lbs 20918 df-sra 21018 df-rgmod 21019 df-dsmm 21596 df-frlm 21611 df-uvc 21647 |
This theorem is referenced by: matunitlindflem2 36948 |
Copyright terms: Public domain | W3C validator |