MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfir Structured version   Visualization version   GIF version

Theorem fodomfir 9363
Description: There exists a mapping from a finite set onto any nonempty set that it dominates, proved without using the Axiom of Power Sets (unlike fodomr 9158). (Contributed by BTernaryTau, 23-Jun-2025.)
Assertion
Ref Expression
fodomfir ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomfir
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 8973 . . . . . . 7 Rel ≺
21brrelex2i 5731 . . . . . 6 (∅ ≺ 𝐵𝐵 ∈ V)
3 0sdomg 9134 . . . . . . 7 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
4 n0 4346 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
53, 4bitrdi 286 . . . . . 6 (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
62, 5syl 17 . . . . 5 (∅ ≺ 𝐵 → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
76ibi 266 . . . 4 (∅ ≺ 𝐵 → ∃𝑧 𝑧𝐵)
8 domfi 9219 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
9 simpl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ∈ Fin)
10 brdomi 8981 . . . . . . . 8 (𝐵𝐴 → ∃𝑔 𝑔:𝐵1-1𝐴)
11 f1fn 6791 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴𝑔 Fn 𝐵)
12 fnfi 9208 . . . . . . . . . . . 12 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝑔 ∈ Fin)
1311, 12sylan 578 . . . . . . . . . . 11 ((𝑔:𝐵1-1𝐴𝐵 ∈ Fin) → 𝑔 ∈ Fin)
1413ex 411 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → (𝐵 ∈ Fin → 𝑔 ∈ Fin))
15 cnvfi 9207 . . . . . . . . . . . . . 14 (𝑔 ∈ Fin → 𝑔 ∈ Fin)
16 diffi 9206 . . . . . . . . . . . . . . 15 (𝐴 ∈ Fin → (𝐴 ∖ ran 𝑔) ∈ Fin)
17 snfi 9073 . . . . . . . . . . . . . . 15 {𝑧} ∈ Fin
18 xpfi 9353 . . . . . . . . . . . . . . 15 (((𝐴 ∖ ran 𝑔) ∈ Fin ∧ {𝑧} ∈ Fin) → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ Fin)
1916, 17, 18sylancl 584 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ Fin)
20 unfi 9202 . . . . . . . . . . . . . 14 ((𝑔 ∈ Fin ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ Fin) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ Fin)
2115, 19, 20syl2an 594 . . . . . . . . . . . . 13 ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ Fin)
22 df-f1 6551 . . . . . . . . . . . . . . . . . . 19 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
2322simprbi 495 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐵1-1𝐴 → Fun 𝑔)
24 vex 3466 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
2524fconst 6780 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧}
26 ffun 6723 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝐴 ∖ ran 𝑔) × {𝑧}))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . . 18 Fun ((𝐴 ∖ ran 𝑔) × {𝑧})
2823, 27jctir 519 . . . . . . . . . . . . . . . . 17 (𝑔:𝐵1-1𝐴 → (Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})))
29 df-rn 5685 . . . . . . . . . . . . . . . . . . . 20 ran 𝑔 = dom 𝑔
3029eqcomi 2735 . . . . . . . . . . . . . . . . . . 19 dom 𝑔 = ran 𝑔
3124snnz 4775 . . . . . . . . . . . . . . . . . . . 20 {𝑧} ≠ ∅
32 dmxp 5927 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ≠ ∅ → dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔))
3331, 32ax-mp 5 . . . . . . . . . . . . . . . . . . 19 dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔)
3430, 33ineq12i 4208 . . . . . . . . . . . . . . . . . 18 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔))
35 disjdif 4466 . . . . . . . . . . . . . . . . . 18 (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔)) = ∅
3634, 35eqtri 2754 . . . . . . . . . . . . . . . . 17 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅
37 funun 6597 . . . . . . . . . . . . . . . . 17 (((Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3828, 36, 37sylancl 584 . . . . . . . . . . . . . . . 16 (𝑔:𝐵1-1𝐴 → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3938adantl 480 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑔:𝐵1-1𝐴) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
40 dmun 5909 . . . . . . . . . . . . . . . . . 18 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4129uneq1i 4156 . . . . . . . . . . . . . . . . . 18 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4233uneq2i 4157 . . . . . . . . . . . . . . . . . 18 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
4340, 41, 423eqtr2i 2760 . . . . . . . . . . . . . . . . 17 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
44 f1f 6790 . . . . . . . . . . . . . . . . . . 19 (𝑔:𝐵1-1𝐴𝑔:𝐵𝐴)
4544frnd 6728 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐵1-1𝐴 → ran 𝑔𝐴)
46 undif 4476 . . . . . . . . . . . . . . . . . 18 (ran 𝑔𝐴 ↔ (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4745, 46sylib 217 . . . . . . . . . . . . . . . . 17 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4843, 47eqtrid 2778 . . . . . . . . . . . . . . . 16 (𝑔:𝐵1-1𝐴 → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
4948adantl 480 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑔:𝐵1-1𝐴) → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
50 df-fn 6549 . . . . . . . . . . . . . . 15 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ↔ (Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴))
5139, 49, 50sylanbrc 581 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴)
52 rnun 6149 . . . . . . . . . . . . . . 15 ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧}))
53 dfdm4 5894 . . . . . . . . . . . . . . . . . 18 dom 𝑔 = ran 𝑔
54 f1dm 6794 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐵1-1𝐴 → dom 𝑔 = 𝐵)
5553, 54eqtr3id 2780 . . . . . . . . . . . . . . . . 17 (𝑔:𝐵1-1𝐴 → ran 𝑔 = 𝐵)
5655uneq1d 4159 . . . . . . . . . . . . . . . 16 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})))
57 xpeq1 5688 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
58 0xp 5772 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ × {𝑧}) = ∅
5957, 58eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
6059rneqd 5936 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ran ∅)
61 rn0 5924 . . . . . . . . . . . . . . . . . . . . 21 ran ∅ = ∅
6260, 61eqtrdi 2782 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
63 0ss 4394 . . . . . . . . . . . . . . . . . . . 20 ∅ ⊆ 𝐵
6462, 63eqsstrdi 4033 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
6564a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∖ ran 𝑔) = ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
66 rnxp 6173 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∖ ran 𝑔) ≠ ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
6766adantr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
68 snssi 4807 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 → {𝑧} ⊆ 𝐵)
6968adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → {𝑧} ⊆ 𝐵)
7067, 69eqsstrd 4017 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
7170ex 411 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∖ ran 𝑔) ≠ ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
7265, 71pm2.61ine 3015 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
73 ssequn2 4181 . . . . . . . . . . . . . . . . 17 (ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵 ↔ (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7472, 73sylib 217 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7556, 74sylan9eqr 2788 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7652, 75eqtrid 2778 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑔:𝐵1-1𝐴) → ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
77 df-fo 6552 . . . . . . . . . . . . . 14 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 ↔ ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ∧ ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵))
7851, 76, 77sylanbrc 581 . . . . . . . . . . . . 13 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵)
79 foeq1 6803 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝐴onto𝐵 ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵))
8079spcegv 3582 . . . . . . . . . . . . 13 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ Fin → ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8121, 78, 80syl2im 40 . . . . . . . . . . . 12 ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑧𝐵𝑔:𝐵1-1𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
8281expcomd 415 . . . . . . . . . . 11 ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑔:𝐵1-1𝐴 → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8382com12 32 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8414, 83syland 601 . . . . . . . . 9 (𝑔:𝐵1-1𝐴 → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8584exlimiv 1926 . . . . . . . 8 (∃𝑔 𝑔:𝐵1-1𝐴 → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8610, 85syl 17 . . . . . . 7 (𝐵𝐴 → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8786adantl 480 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
888, 9, 87mp2and 697 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8988exlimdv 1929 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
907, 89syl5 34 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (∅ ≺ 𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
91903impia 1114 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∅ ≺ 𝐵) → ∃𝑓 𝑓:𝐴onto𝐵)
92913com23 1123 1 ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wex 1774  wcel 2099  wne 2930  Vcvv 3462  cdif 3943  cun 3944  cin 3945  wss 3946  c0 4322  {csn 4623   class class class wbr 5145   × cxp 5672  ccnv 5673  dom cdm 5674  ran crn 5675  Fun wfun 6540   Fn wfn 6541  wf 6542  1-1wf1 6543  ontowfo 6544  cdom 8964  csdm 8965  Fincfn 8966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-om 7869  df-1o 8488  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970
This theorem is referenced by:  fodomfib  9364
  Copyright terms: Public domain W3C validator