MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomfir Structured version   Visualization version   GIF version

Theorem fodomfir 9396
Description: There exists a mapping from a finite set onto any nonempty set that it dominates, proved without using the Axiom of Power Sets (unlike fodomr 9194). (Contributed by BTernaryTau, 23-Jun-2025.)
Assertion
Ref Expression
fodomfir ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fodomfir
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 9010 . . . . . . 7 Rel ≺
21brrelex2i 5757 . . . . . 6 (∅ ≺ 𝐵𝐵 ∈ V)
3 0sdomg 9170 . . . . . . 7 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
4 n0 4376 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑧 𝑧𝐵)
53, 4bitrdi 287 . . . . . 6 (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
62, 5syl 17 . . . . 5 (∅ ≺ 𝐵 → (∅ ≺ 𝐵 ↔ ∃𝑧 𝑧𝐵))
76ibi 267 . . . 4 (∅ ≺ 𝐵 → ∃𝑧 𝑧𝐵)
8 domfi 9255 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
9 simpl 482 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐴 ∈ Fin)
10 brdomi 9018 . . . . . . . 8 (𝐵𝐴 → ∃𝑔 𝑔:𝐵1-1𝐴)
11 f1fn 6818 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐴𝑔 Fn 𝐵)
12 fnfi 9244 . . . . . . . . . . . 12 ((𝑔 Fn 𝐵𝐵 ∈ Fin) → 𝑔 ∈ Fin)
1311, 12sylan 579 . . . . . . . . . . 11 ((𝑔:𝐵1-1𝐴𝐵 ∈ Fin) → 𝑔 ∈ Fin)
1413ex 412 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → (𝐵 ∈ Fin → 𝑔 ∈ Fin))
15 cnvfi 9243 . . . . . . . . . . . . . 14 (𝑔 ∈ Fin → 𝑔 ∈ Fin)
16 diffi 9242 . . . . . . . . . . . . . . 15 (𝐴 ∈ Fin → (𝐴 ∖ ran 𝑔) ∈ Fin)
17 snfi 9109 . . . . . . . . . . . . . . 15 {𝑧} ∈ Fin
18 xpfi 9386 . . . . . . . . . . . . . . 15 (((𝐴 ∖ ran 𝑔) ∈ Fin ∧ {𝑧} ∈ Fin) → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ Fin)
1916, 17, 18sylancl 585 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ Fin)
20 unfi 9238 . . . . . . . . . . . . . 14 ((𝑔 ∈ Fin ∧ ((𝐴 ∖ ran 𝑔) × {𝑧}) ∈ Fin) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ Fin)
2115, 19, 20syl2an 595 . . . . . . . . . . . . 13 ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ Fin)
22 df-f1 6578 . . . . . . . . . . . . . . . . . . 19 (𝑔:𝐵1-1𝐴 ↔ (𝑔:𝐵𝐴 ∧ Fun 𝑔))
2322simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐵1-1𝐴 → Fun 𝑔)
24 vex 3492 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
2524fconst 6807 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧}
26 ffun 6750 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∖ ran 𝑔) × {𝑧}):(𝐴 ∖ ran 𝑔)⟶{𝑧} → Fun ((𝐴 ∖ ran 𝑔) × {𝑧}))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . . 18 Fun ((𝐴 ∖ ran 𝑔) × {𝑧})
2823, 27jctir 520 . . . . . . . . . . . . . . . . 17 (𝑔:𝐵1-1𝐴 → (Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})))
29 df-rn 5711 . . . . . . . . . . . . . . . . . . . 20 ran 𝑔 = dom 𝑔
3029eqcomi 2749 . . . . . . . . . . . . . . . . . . 19 dom 𝑔 = ran 𝑔
3124snnz 4801 . . . . . . . . . . . . . . . . . . . 20 {𝑧} ≠ ∅
32 dmxp 5953 . . . . . . . . . . . . . . . . . . . 20 ({𝑧} ≠ ∅ → dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔))
3331, 32ax-mp 5 . . . . . . . . . . . . . . . . . . 19 dom ((𝐴 ∖ ran 𝑔) × {𝑧}) = (𝐴 ∖ ran 𝑔)
3430, 33ineq12i 4239 . . . . . . . . . . . . . . . . . 18 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔))
35 disjdif 4495 . . . . . . . . . . . . . . . . . 18 (ran 𝑔 ∩ (𝐴 ∖ ran 𝑔)) = ∅
3634, 35eqtri 2768 . . . . . . . . . . . . . . . . 17 (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅
37 funun 6624 . . . . . . . . . . . . . . . . 17 (((Fun 𝑔 ∧ Fun ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ (dom 𝑔 ∩ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = ∅) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3828, 36, 37sylancl 585 . . . . . . . . . . . . . . . 16 (𝑔:𝐵1-1𝐴 → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
3938adantl 481 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑔:𝐵1-1𝐴) → Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})))
40 dmun 5935 . . . . . . . . . . . . . . . . . 18 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4129uneq1i 4187 . . . . . . . . . . . . . . . . . 18 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (dom 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧}))
4233uneq2i 4188 . . . . . . . . . . . . . . . . . 18 (ran 𝑔 ∪ dom ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
4340, 41, 423eqtr2i 2774 . . . . . . . . . . . . . . . . 17 dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔))
44 f1f 6817 . . . . . . . . . . . . . . . . . . 19 (𝑔:𝐵1-1𝐴𝑔:𝐵𝐴)
4544frnd 6755 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐵1-1𝐴 → ran 𝑔𝐴)
46 undif 4505 . . . . . . . . . . . . . . . . . 18 (ran 𝑔𝐴 ↔ (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4745, 46sylib 218 . . . . . . . . . . . . . . . . 17 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ (𝐴 ∖ ran 𝑔)) = 𝐴)
4843, 47eqtrid 2792 . . . . . . . . . . . . . . . 16 (𝑔:𝐵1-1𝐴 → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑔:𝐵1-1𝐴) → dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴)
50 df-fn 6576 . . . . . . . . . . . . . . 15 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ↔ (Fun (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∧ dom (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐴))
5139, 49, 50sylanbrc 582 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴)
52 rnun 6177 . . . . . . . . . . . . . . 15 ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧}))
53 dfdm4 5920 . . . . . . . . . . . . . . . . . 18 dom 𝑔 = ran 𝑔
54 f1dm 6821 . . . . . . . . . . . . . . . . . 18 (𝑔:𝐵1-1𝐴 → dom 𝑔 = 𝐵)
5553, 54eqtr3id 2794 . . . . . . . . . . . . . . . . 17 (𝑔:𝐵1-1𝐴 → ran 𝑔 = 𝐵)
5655uneq1d 4190 . . . . . . . . . . . . . . . 16 (𝑔:𝐵1-1𝐴 → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})))
57 xpeq1 5714 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = (∅ × {𝑧}))
58 0xp 5798 . . . . . . . . . . . . . . . . . . . . . . 23 (∅ × {𝑧}) = ∅
5957, 58eqtrdi 2796 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∖ ran 𝑔) = ∅ → ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
6059rneqd 5963 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ran ∅)
61 rn0 5950 . . . . . . . . . . . . . . . . . . . . 21 ran ∅ = ∅
6260, 61eqtrdi 2796 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = ∅)
63 0ss 4423 . . . . . . . . . . . . . . . . . . . 20 ∅ ⊆ 𝐵
6462, 63eqsstrdi 4063 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∖ ran 𝑔) = ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
6564a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∖ ran 𝑔) = ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
66 rnxp 6201 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∖ ran 𝑔) ≠ ∅ → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
6766adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) = {𝑧})
68 snssi 4833 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 → {𝑧} ⊆ 𝐵)
6968adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → {𝑧} ⊆ 𝐵)
7067, 69eqsstrd 4047 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∖ ran 𝑔) ≠ ∅ ∧ 𝑧𝐵) → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
7170ex 412 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∖ ran 𝑔) ≠ ∅ → (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵))
7265, 71pm2.61ine 3031 . . . . . . . . . . . . . . . . 17 (𝑧𝐵 → ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵)
73 ssequn2 4212 . . . . . . . . . . . . . . . . 17 (ran ((𝐴 ∖ ran 𝑔) × {𝑧}) ⊆ 𝐵 ↔ (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7472, 73sylib 218 . . . . . . . . . . . . . . . 16 (𝑧𝐵 → (𝐵 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7556, 74sylan9eqr 2802 . . . . . . . . . . . . . . 15 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (ran 𝑔 ∪ ran ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
7652, 75eqtrid 2792 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑔:𝐵1-1𝐴) → ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵)
77 df-fo 6579 . . . . . . . . . . . . . 14 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 ↔ ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) Fn 𝐴 ∧ ran (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) = 𝐵))
7851, 76, 77sylanbrc 582 . . . . . . . . . . . . 13 ((𝑧𝐵𝑔:𝐵1-1𝐴) → (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵)
79 foeq1 6830 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) → (𝑓:𝐴onto𝐵 ↔ (𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵))
8079spcegv 3610 . . . . . . . . . . . . 13 ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})) ∈ Fin → ((𝑔 ∪ ((𝐴 ∖ ran 𝑔) × {𝑧})):𝐴onto𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8121, 78, 80syl2im 40 . . . . . . . . . . . 12 ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → ((𝑧𝐵𝑔:𝐵1-1𝐴) → ∃𝑓 𝑓:𝐴onto𝐵))
8281expcomd 416 . . . . . . . . . . 11 ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑔:𝐵1-1𝐴 → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8382com12 32 . . . . . . . . . 10 (𝑔:𝐵1-1𝐴 → ((𝑔 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8414, 83syland 602 . . . . . . . . 9 (𝑔:𝐵1-1𝐴 → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8584exlimiv 1929 . . . . . . . 8 (∃𝑔 𝑔:𝐵1-1𝐴 → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8610, 85syl 17 . . . . . . 7 (𝐵𝐴 → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
8786adantl 481 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵)))
888, 9, 87mp2and 698 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
8988exlimdv 1932 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (∃𝑧 𝑧𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
907, 89syl5 34 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (∅ ≺ 𝐵 → ∃𝑓 𝑓:𝐴onto𝐵))
91903impia 1117 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴 ∧ ∅ ≺ 𝐵) → ∃𝑓 𝑓:𝐴onto𝐵)
92913com23 1126 1 ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵𝐵𝐴) → ∃𝑓 𝑓:𝐴onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  ontowfo 6571  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  fodomfib  9397
  Copyright terms: Public domain W3C validator