Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprel2 Structured version   Visualization version   GIF version

Theorem fpprel2 46395
Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fpprel2 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))

Proof of Theorem fpprel2
StepHypRef Expression
1 2nn 12281 . . . . 5 2 ∈ ℕ
2 fpprel 46382 . . . . 5 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
4 eluz4eluz2 12865 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
543ad2ant1 1133 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ (ℤ‘2))
65adantl 482 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ (ℤ‘2))
7 fppr2odd 46385 . . . . . . . 8 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
87adantr 481 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ Odd )
9 simpr2 1195 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∉ ℙ)
106, 8, 93jca 1128 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → (𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ))
11 fpprwppr 46393 . . . . . . 7 (𝑋 ∈ ( FPPr ‘2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
12 2re 12282 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 ∈ ℝ)
14 eluz4nn 12866 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1514nnrpd 13010 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
16 0le2 12310 . . . . . . . . . 10 0 ≤ 2
1716a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 0 ≤ 2)
18 eluz2 12824 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
19 4z 12592 . . . . . . . . . . . . . 14 4 ∈ ℤ
20 zlem1lt 12610 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
2119, 20mpan 688 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
22 4m1e3 12337 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2322breq1i 5154 . . . . . . . . . . . . . 14 ((4 − 1) < 𝑋 ↔ 3 < 𝑋)
2412a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 ∈ ℝ)
25 3re 12288 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 ∈ ℝ)
27 zre 12558 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℤ → 𝑋 ∈ ℝ)
2827adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 𝑋 ∈ ℝ)
29 2lt3 12380 . . . . . . . . . . . . . . . . 17 2 < 3
3029a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 3)
31 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 < 𝑋)
3224, 26, 28, 30, 31lttrd 11371 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 𝑋)
3332ex 413 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → (3 < 𝑋 → 2 < 𝑋))
3423, 33biimtrid 241 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → ((4 − 1) < 𝑋 → 2 < 𝑋))
3521, 34sylbid 239 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋))
3635a1i 11 . . . . . . . . . . 11 (4 ∈ ℤ → (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋)))
37363imp 1111 . . . . . . . . . 10 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋) → 2 < 𝑋)
3818, 37sylbi 216 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 < 𝑋)
39 modid 13857 . . . . . . . . 9 (((2 ∈ ℝ ∧ 𝑋 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑋)) → (2 mod 𝑋) = 2)
4013, 15, 17, 38, 39syl22anc 837 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (2 mod 𝑋) = 2)
41403ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (2 mod 𝑋) = 2)
4211, 41sylan9eq 2792 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((2↑𝑋) mod 𝑋) = 2)
4310, 42jca 512 . . . . 5 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
4443ex 413 . . . 4 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
453, 44sylbid 239 . . 3 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
4645pm2.43i 52 . 2 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
47 ge2nprmge4 16634 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
48473adant2 1131 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
49 simp3 1138 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∉ ℙ)
5048, 49jca 512 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
5150adantr 481 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
521a1i 11 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 2 ∈ ℕ)
5312a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 ∈ ℝ)
54 eluz2nn 12864 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
5554nnrpd 13010 . . . . . . . . 9 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
56553ad2ant1 1133 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℝ+)
5716a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 0 ≤ 2)
5848, 38syl 17 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 < 𝑋)
5953, 56, 57, 58, 39syl22anc 837 . . . . . . 7 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (2 mod 𝑋) = 2)
6059eqcomd 2738 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 = (2 mod 𝑋))
6160eqeq2d 2743 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (((2↑𝑋) mod 𝑋) = 2 ↔ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
6261biimpa 477 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
6352, 62jca 512 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
64 gcd2odd1 46322 . . . . . 6 (𝑋 ∈ Odd → (𝑋 gcd 2) = 1)
65643ad2ant2 1134 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 gcd 2) = 1)
6665adantr 481 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 gcd 2) = 1)
67 fpprwpprb 46394 . . . 4 ((𝑋 gcd 2) = 1 → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6866, 67syl 17 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6951, 63, 68mpbir2and 711 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 𝑋 ∈ ( FPPr ‘2))
7046, 69impbii 208 1 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wnel 3046   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106  1c1 11107   < clt 11244  cle 11245  cmin 11440  cn 12208  2c2 12263  3c3 12264  4c4 12265  cz 12554  cuz 12818  +crp 12970   mod cmo 13830  cexp 14023   gcd cgcd 16431  cprime 16604   Odd codd 46279   FPPr cfppr 46378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-even 46280  df-odd 46281  df-fppr 46379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator