Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprel2 Structured version   Visualization version   GIF version

Theorem fpprel2 45081
Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fpprel2 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))

Proof of Theorem fpprel2
StepHypRef Expression
1 2nn 11976 . . . . 5 2 ∈ ℕ
2 fpprel 45068 . . . . 5 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
4 eluz4eluz2 12554 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
543ad2ant1 1131 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ (ℤ‘2))
65adantl 481 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ (ℤ‘2))
7 fppr2odd 45071 . . . . . . . 8 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
87adantr 480 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ Odd )
9 simpr2 1193 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∉ ℙ)
106, 8, 93jca 1126 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → (𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ))
11 fpprwppr 45079 . . . . . . 7 (𝑋 ∈ ( FPPr ‘2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
12 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 ∈ ℝ)
14 eluz4nn 12555 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1514nnrpd 12699 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
16 0le2 12005 . . . . . . . . . 10 0 ≤ 2
1716a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 0 ≤ 2)
18 eluz2 12517 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
19 4z 12284 . . . . . . . . . . . . . 14 4 ∈ ℤ
20 zlem1lt 12302 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
2119, 20mpan 686 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
22 4m1e3 12032 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2322breq1i 5077 . . . . . . . . . . . . . 14 ((4 − 1) < 𝑋 ↔ 3 < 𝑋)
2412a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 ∈ ℝ)
25 3re 11983 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 ∈ ℝ)
27 zre 12253 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℤ → 𝑋 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 𝑋 ∈ ℝ)
29 2lt3 12075 . . . . . . . . . . . . . . . . 17 2 < 3
3029a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 3)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 < 𝑋)
3224, 26, 28, 30, 31lttrd 11066 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 𝑋)
3332ex 412 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → (3 < 𝑋 → 2 < 𝑋))
3423, 33syl5bi 241 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → ((4 − 1) < 𝑋 → 2 < 𝑋))
3521, 34sylbid 239 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋))
3635a1i 11 . . . . . . . . . . 11 (4 ∈ ℤ → (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋)))
37363imp 1109 . . . . . . . . . 10 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋) → 2 < 𝑋)
3818, 37sylbi 216 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 < 𝑋)
39 modid 13544 . . . . . . . . 9 (((2 ∈ ℝ ∧ 𝑋 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑋)) → (2 mod 𝑋) = 2)
4013, 15, 17, 38, 39syl22anc 835 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (2 mod 𝑋) = 2)
41403ad2ant1 1131 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (2 mod 𝑋) = 2)
4211, 41sylan9eq 2799 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((2↑𝑋) mod 𝑋) = 2)
4310, 42jca 511 . . . . 5 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
4443ex 412 . . . 4 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
453, 44sylbid 239 . . 3 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
4645pm2.43i 52 . 2 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
47 ge2nprmge4 16334 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
48473adant2 1129 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
49 simp3 1136 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∉ ℙ)
5048, 49jca 511 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
5150adantr 480 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
521a1i 11 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 2 ∈ ℕ)
5312a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 ∈ ℝ)
54 eluz2nn 12553 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
5554nnrpd 12699 . . . . . . . . 9 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
56553ad2ant1 1131 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℝ+)
5716a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 0 ≤ 2)
5848, 38syl 17 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 < 𝑋)
5953, 56, 57, 58, 39syl22anc 835 . . . . . . 7 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (2 mod 𝑋) = 2)
6059eqcomd 2744 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 = (2 mod 𝑋))
6160eqeq2d 2749 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (((2↑𝑋) mod 𝑋) = 2 ↔ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
6261biimpa 476 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
6352, 62jca 511 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
64 gcd2odd1 45008 . . . . . 6 (𝑋 ∈ Odd → (𝑋 gcd 2) = 1)
65643ad2ant2 1132 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 gcd 2) = 1)
6665adantr 480 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 gcd 2) = 1)
67 fpprwpprb 45080 . . . 4 ((𝑋 gcd 2) = 1 → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6866, 67syl 17 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6951, 63, 68mpbir2and 709 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 𝑋 ∈ ( FPPr ‘2))
7046, 69impbii 208 1 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wnel 3048   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  3c3 11959  4c4 11960  cz 12249  cuz 12511  +crp 12659   mod cmo 13517  cexp 13710   gcd cgcd 16129  cprime 16304   Odd codd 44965   FPPr cfppr 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-even 44966  df-odd 44967  df-fppr 45065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator