Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprel2 Structured version   Visualization version   GIF version

Theorem fpprel2 44866
Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fpprel2 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))

Proof of Theorem fpprel2
StepHypRef Expression
1 2nn 11903 . . . . 5 2 ∈ ℕ
2 fpprel 44853 . . . . 5 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
4 eluz4eluz2 12481 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
543ad2ant1 1135 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ (ℤ‘2))
65adantl 485 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ (ℤ‘2))
7 fppr2odd 44856 . . . . . . . 8 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
87adantr 484 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ Odd )
9 simpr2 1197 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∉ ℙ)
106, 8, 93jca 1130 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → (𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ))
11 fpprwppr 44864 . . . . . . 7 (𝑋 ∈ ( FPPr ‘2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
12 2re 11904 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 ∈ ℝ)
14 eluz4nn 12482 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1514nnrpd 12626 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
16 0le2 11932 . . . . . . . . . 10 0 ≤ 2
1716a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 0 ≤ 2)
18 eluz2 12444 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
19 4z 12211 . . . . . . . . . . . . . 14 4 ∈ ℤ
20 zlem1lt 12229 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
2119, 20mpan 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
22 4m1e3 11959 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2322breq1i 5060 . . . . . . . . . . . . . 14 ((4 − 1) < 𝑋 ↔ 3 < 𝑋)
2412a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 ∈ ℝ)
25 3re 11910 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 ∈ ℝ)
27 zre 12180 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℤ → 𝑋 ∈ ℝ)
2827adantr 484 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 𝑋 ∈ ℝ)
29 2lt3 12002 . . . . . . . . . . . . . . . . 17 2 < 3
3029a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 3)
31 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 < 𝑋)
3224, 26, 28, 30, 31lttrd 10993 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 𝑋)
3332ex 416 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → (3 < 𝑋 → 2 < 𝑋))
3423, 33syl5bi 245 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → ((4 − 1) < 𝑋 → 2 < 𝑋))
3521, 34sylbid 243 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋))
3635a1i 11 . . . . . . . . . . 11 (4 ∈ ℤ → (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋)))
37363imp 1113 . . . . . . . . . 10 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋) → 2 < 𝑋)
3818, 37sylbi 220 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 < 𝑋)
39 modid 13469 . . . . . . . . 9 (((2 ∈ ℝ ∧ 𝑋 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑋)) → (2 mod 𝑋) = 2)
4013, 15, 17, 38, 39syl22anc 839 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (2 mod 𝑋) = 2)
41403ad2ant1 1135 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (2 mod 𝑋) = 2)
4211, 41sylan9eq 2798 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((2↑𝑋) mod 𝑋) = 2)
4310, 42jca 515 . . . . 5 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
4443ex 416 . . . 4 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
453, 44sylbid 243 . . 3 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
4645pm2.43i 52 . 2 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
47 ge2nprmge4 16258 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
48473adant2 1133 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
49 simp3 1140 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∉ ℙ)
5048, 49jca 515 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
5150adantr 484 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
521a1i 11 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 2 ∈ ℕ)
5312a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 ∈ ℝ)
54 eluz2nn 12480 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
5554nnrpd 12626 . . . . . . . . 9 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
56553ad2ant1 1135 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℝ+)
5716a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 0 ≤ 2)
5848, 38syl 17 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 < 𝑋)
5953, 56, 57, 58, 39syl22anc 839 . . . . . . 7 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (2 mod 𝑋) = 2)
6059eqcomd 2743 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 = (2 mod 𝑋))
6160eqeq2d 2748 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (((2↑𝑋) mod 𝑋) = 2 ↔ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
6261biimpa 480 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
6352, 62jca 515 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
64 gcd2odd1 44793 . . . . . 6 (𝑋 ∈ Odd → (𝑋 gcd 2) = 1)
65643ad2ant2 1136 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 gcd 2) = 1)
6665adantr 484 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 gcd 2) = 1)
67 fpprwpprb 44865 . . . 4 ((𝑋 gcd 2) = 1 → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6866, 67syl 17 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6951, 63, 68mpbir2and 713 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 𝑋 ∈ ( FPPr ‘2))
7046, 69impbii 212 1 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wnel 3046   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   < clt 10867  cle 10868  cmin 11062  cn 11830  2c2 11885  3c3 11886  4c4 11887  cz 12176  cuz 12438  +crp 12586   mod cmo 13442  cexp 13635   gcd cgcd 16053  cprime 16228   Odd codd 44750   FPPr cfppr 44849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-fz 13096  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-gcd 16054  df-prm 16229  df-even 44751  df-odd 44752  df-fppr 44850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator