Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprel2 Structured version   Visualization version   GIF version

Theorem fpprel2 47726
Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fpprel2 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))

Proof of Theorem fpprel2
StepHypRef Expression
1 2nn 12219 . . . . 5 2 ∈ ℕ
2 fpprel 47713 . . . . 5 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
4 uzuzle24 12804 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
543ad2ant1 1133 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ (ℤ‘2))
65adantl 481 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ (ℤ‘2))
7 fppr2odd 47716 . . . . . . . 8 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
87adantr 480 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ Odd )
9 simpr2 1196 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∉ ℙ)
106, 8, 93jca 1128 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → (𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ))
11 fpprwppr 47724 . . . . . . 7 (𝑋 ∈ ( FPPr ‘2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
12 2re 12220 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 ∈ ℝ)
14 eluz4nn 12809 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1514nnrpd 12953 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
16 0le2 12248 . . . . . . . . . 10 0 ≤ 2
1716a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 0 ≤ 2)
18 eluz2 12759 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
19 4z 12527 . . . . . . . . . . . . . 14 4 ∈ ℤ
20 zlem1lt 12545 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
2119, 20mpan 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
22 4m1e3 12270 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2322breq1i 5102 . . . . . . . . . . . . . 14 ((4 − 1) < 𝑋 ↔ 3 < 𝑋)
2412a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 ∈ ℝ)
25 3re 12226 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 ∈ ℝ)
27 zre 12493 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℤ → 𝑋 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 𝑋 ∈ ℝ)
29 2lt3 12313 . . . . . . . . . . . . . . . . 17 2 < 3
3029a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 3)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 < 𝑋)
3224, 26, 28, 30, 31lttrd 11295 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 𝑋)
3332ex 412 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → (3 < 𝑋 → 2 < 𝑋))
3423, 33biimtrid 242 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → ((4 − 1) < 𝑋 → 2 < 𝑋))
3521, 34sylbid 240 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋))
3635a1i 11 . . . . . . . . . . 11 (4 ∈ ℤ → (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋)))
37363imp 1110 . . . . . . . . . 10 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋) → 2 < 𝑋)
3818, 37sylbi 217 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 < 𝑋)
39 modid 13818 . . . . . . . . 9 (((2 ∈ ℝ ∧ 𝑋 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑋)) → (2 mod 𝑋) = 2)
4013, 15, 17, 38, 39syl22anc 838 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (2 mod 𝑋) = 2)
41403ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (2 mod 𝑋) = 2)
4211, 41sylan9eq 2784 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((2↑𝑋) mod 𝑋) = 2)
4310, 42jca 511 . . . . 5 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
4443ex 412 . . . 4 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
453, 44sylbid 240 . . 3 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
4645pm2.43i 52 . 2 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
47 ge2nprmge4 16630 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
48473adant2 1131 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
49 simp3 1138 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∉ ℙ)
5048, 49jca 511 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
5150adantr 480 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
521a1i 11 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 2 ∈ ℕ)
5312a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 ∈ ℝ)
54 eluz2nn 12807 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
5554nnrpd 12953 . . . . . . . . 9 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
56553ad2ant1 1133 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℝ+)
5716a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 0 ≤ 2)
5848, 38syl 17 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 < 𝑋)
5953, 56, 57, 58, 39syl22anc 838 . . . . . . 7 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (2 mod 𝑋) = 2)
6059eqcomd 2735 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 = (2 mod 𝑋))
6160eqeq2d 2740 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (((2↑𝑋) mod 𝑋) = 2 ↔ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
6261biimpa 476 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
6352, 62jca 511 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
64 gcd2odd1 47653 . . . . . 6 (𝑋 ∈ Odd → (𝑋 gcd 2) = 1)
65643ad2ant2 1134 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 gcd 2) = 1)
6665adantr 480 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 gcd 2) = 1)
67 fpprwpprb 47725 . . . 4 ((𝑋 gcd 2) = 1 → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6866, 67syl 17 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6951, 63, 68mpbir2and 713 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 𝑋 ∈ ( FPPr ‘2))
7046, 69impbii 209 1 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3029   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   < clt 11168  cle 11169  cmin 11365  cn 12146  2c2 12201  3c3 12202  4c4 12203  cz 12489  cuz 12753  +crp 12911   mod cmo 13791  cexp 13986   gcd cgcd 16423  cprime 16600   Odd codd 47610   FPPr cfppr 47709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-even 47611  df-odd 47612  df-fppr 47710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator