Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpprel2 Structured version   Visualization version   GIF version

Theorem fpprel2 47722
Description: An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.)
Assertion
Ref Expression
fpprel2 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))

Proof of Theorem fpprel2
StepHypRef Expression
1 2nn 12318 . . . . 5 2 ∈ ℕ
2 fpprel 47709 . . . . 5 (2 ∈ ℕ → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
31, 2mp1i 13 . . . 4 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) ↔ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)))
4 eluz4eluz2 12904 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ (ℤ‘2))
543ad2ant1 1133 . . . . . . . 8 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → 𝑋 ∈ (ℤ‘2))
65adantl 481 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ (ℤ‘2))
7 fppr2odd 47712 . . . . . . . 8 (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd )
87adantr 480 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∈ Odd )
9 simpr2 1196 . . . . . . 7 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → 𝑋 ∉ ℙ)
106, 8, 93jca 1128 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → (𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ))
11 fpprwppr 47720 . . . . . . 7 (𝑋 ∈ ( FPPr ‘2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
12 2re 12319 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 ∈ ℝ)
14 eluz4nn 12907 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℕ)
1514nnrpd 13054 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 𝑋 ∈ ℝ+)
16 0le2 12347 . . . . . . . . . 10 0 ≤ 2
1716a1i 11 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 0 ≤ 2)
18 eluz2 12863 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋))
19 4z 12631 . . . . . . . . . . . . . 14 4 ∈ ℤ
20 zlem1lt 12649 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
2119, 20mpan 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → (4 ≤ 𝑋 ↔ (4 − 1) < 𝑋))
22 4m1e3 12374 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2322breq1i 5131 . . . . . . . . . . . . . 14 ((4 − 1) < 𝑋 ↔ 3 < 𝑋)
2412a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 ∈ ℝ)
25 3re 12325 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 ∈ ℝ)
27 zre 12597 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℤ → 𝑋 ∈ ℝ)
2827adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 𝑋 ∈ ℝ)
29 2lt3 12417 . . . . . . . . . . . . . . . . 17 2 < 3
3029a1i 11 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 3)
31 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 3 < 𝑋)
3224, 26, 28, 30, 31lttrd 11401 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℤ ∧ 3 < 𝑋) → 2 < 𝑋)
3332ex 412 . . . . . . . . . . . . . 14 (𝑋 ∈ ℤ → (3 < 𝑋 → 2 < 𝑋))
3423, 33biimtrid 242 . . . . . . . . . . . . 13 (𝑋 ∈ ℤ → ((4 − 1) < 𝑋 → 2 < 𝑋))
3521, 34sylbid 240 . . . . . . . . . . . 12 (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋))
3635a1i 11 . . . . . . . . . . 11 (4 ∈ ℤ → (𝑋 ∈ ℤ → (4 ≤ 𝑋 → 2 < 𝑋)))
37363imp 1110 . . . . . . . . . 10 ((4 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 4 ≤ 𝑋) → 2 < 𝑋)
3818, 37sylbi 217 . . . . . . . . 9 (𝑋 ∈ (ℤ‘4) → 2 < 𝑋)
39 modid 13918 . . . . . . . . 9 (((2 ∈ ℝ ∧ 𝑋 ∈ ℝ+) ∧ (0 ≤ 2 ∧ 2 < 𝑋)) → (2 mod 𝑋) = 2)
4013, 15, 17, 38, 39syl22anc 838 . . . . . . . 8 (𝑋 ∈ (ℤ‘4) → (2 mod 𝑋) = 2)
41403ad2ant1 1133 . . . . . . 7 ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → (2 mod 𝑋) = 2)
4211, 41sylan9eq 2791 . . . . . 6 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((2↑𝑋) mod 𝑋) = 2)
4310, 42jca 511 . . . . 5 ((𝑋 ∈ ( FPPr ‘2) ∧ (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1)) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
4443ex 412 . . . 4 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ ∧ ((2↑(𝑋 − 1)) mod 𝑋) = 1) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
453, 44sylbid 240 . . 3 (𝑋 ∈ ( FPPr ‘2) → (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)))
4645pm2.43i 52 . 2 (𝑋 ∈ ( FPPr ‘2) → ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
47 ge2nprmge4 16725 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
48473adant2 1131 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ (ℤ‘4))
49 simp3 1138 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∉ ℙ)
5048, 49jca 511 . . . 4 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
5150adantr 480 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ))
521a1i 11 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 2 ∈ ℕ)
5312a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 ∈ ℝ)
54 eluz2nn 12903 . . . . . . . . . 10 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℕ)
5554nnrpd 13054 . . . . . . . . 9 (𝑋 ∈ (ℤ‘2) → 𝑋 ∈ ℝ+)
56553ad2ant1 1133 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 𝑋 ∈ ℝ+)
5716a1i 11 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 0 ≤ 2)
5848, 38syl 17 . . . . . . . 8 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 < 𝑋)
5953, 56, 57, 58, 39syl22anc 838 . . . . . . 7 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (2 mod 𝑋) = 2)
6059eqcomd 2742 . . . . . 6 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → 2 = (2 mod 𝑋))
6160eqeq2d 2747 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (((2↑𝑋) mod 𝑋) = 2 ↔ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
6261biimpa 476 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → ((2↑𝑋) mod 𝑋) = (2 mod 𝑋))
6352, 62jca 511 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))
64 gcd2odd1 47649 . . . . . 6 (𝑋 ∈ Odd → (𝑋 gcd 2) = 1)
65643ad2ant2 1134 . . . . 5 ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) → (𝑋 gcd 2) = 1)
6665adantr 480 . . . 4 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 gcd 2) = 1)
67 fpprwpprb 47721 . . . 4 ((𝑋 gcd 2) = 1 → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6866, 67syl 17 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘4) ∧ 𝑋 ∉ ℙ) ∧ (2 ∈ ℕ ∧ ((2↑𝑋) mod 𝑋) = (2 mod 𝑋)))))
6951, 63, 68mpbir2and 713 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2) → 𝑋 ∈ ( FPPr ‘2))
7046, 69impbii 209 1 (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnel 3037   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   < clt 11274  cle 11275  cmin 11471  cn 12245  2c2 12300  3c3 12301  4c4 12302  cz 12593  cuz 12857  +crp 13013   mod cmo 13891  cexp 14084   gcd cgcd 16518  cprime 16695   Odd codd 47606   FPPr cfppr 47705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-prm 16696  df-even 47607  df-odd 47608  df-fppr 47706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator