![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftalem4 | Structured version Visualization version GIF version |
Description: Lemma for fta 25262: Closure of the auxiliary variables for ftalem5 25259. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
Ref | Expression |
---|---|
ftalem.1 | ⊢ 𝐴 = (coeff‘𝐹) |
ftalem.2 | ⊢ 𝑁 = (deg‘𝐹) |
ftalem.3 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
ftalem.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
ftalem4.5 | ⊢ (𝜑 → (𝐹‘0) ≠ 0) |
ftalem4.6 | ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) |
ftalem4.7 | ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) |
ftalem4.8 | ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) |
ftalem4.9 | ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) |
Ref | Expression |
---|---|
ftalem4 | ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftalem4.6 | . . . 4 ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) | |
2 | ssrab2 3908 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ ℕ | |
3 | nnuz 12033 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | sseqtri 3856 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) |
5 | ftalem.4 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 5 | nnne0d 11429 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ≠ 0) |
7 | ftalem.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
8 | ftalem.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (deg‘𝐹) | |
9 | ftalem.1 | . . . . . . . . . . . 12 ⊢ 𝐴 = (coeff‘𝐹) | |
10 | 8, 9 | dgreq0 24462 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
11 | 7, 10 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
12 | fveq2 6448 | . . . . . . . . . . . 12 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝)) | |
13 | dgr0 24459 | . . . . . . . . . . . 12 ⊢ (deg‘0𝑝) = 0 | |
14 | 12, 13 | syl6eq 2830 | . . . . . . . . . . 11 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = 0) |
15 | 8, 14 | syl5eq 2826 | . . . . . . . . . 10 ⊢ (𝐹 = 0𝑝 → 𝑁 = 0) |
16 | 11, 15 | syl6bir 246 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴‘𝑁) = 0 → 𝑁 = 0)) |
17 | 16 | necon3d 2990 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 → (𝐴‘𝑁) ≠ 0)) |
18 | 6, 17 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
19 | fveq2 6448 | . . . . . . . . 9 ⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) | |
20 | 19 | neeq1d 3028 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝑁) ≠ 0)) |
21 | 20 | elrab 3572 | . . . . . . 7 ⊢ (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ↔ (𝑁 ∈ ℕ ∧ (𝐴‘𝑁) ≠ 0)) |
22 | 5, 18, 21 | sylanbrc 578 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
23 | 22 | ne0d 4150 | . . . . 5 ⊢ (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) |
24 | infssuzcl 12083 | . . . . 5 ⊢ (({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) | |
25 | 4, 23, 24 | sylancr 581 | . . . 4 ⊢ (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
26 | 1, 25 | syl5eqel 2863 | . . 3 ⊢ (𝜑 → 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
27 | fveq2 6448 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝐴‘𝑛) = (𝐴‘𝐾)) | |
28 | 27 | neeq1d 3028 | . . . 4 ⊢ (𝑛 = 𝐾 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝐾) ≠ 0)) |
29 | 28 | elrab 3572 | . . 3 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
30 | 26, 29 | sylib 210 | . 2 ⊢ (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
31 | ftalem4.7 | . . . 4 ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) | |
32 | plyf 24395 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
33 | 7, 32 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
34 | 0cn 10370 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
35 | ffvelrn 6623 | . . . . . . . 8 ⊢ ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ) | |
36 | 33, 34, 35 | sylancl 580 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) ∈ ℂ) |
37 | 9 | coef3 24429 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
38 | 7, 37 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
39 | 30 | simpld 490 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
40 | 39 | nnnn0d 11706 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
41 | 38, 40 | ffvelrnd 6626 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ∈ ℂ) |
42 | 30 | simprd 491 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ≠ 0) |
43 | 36, 41, 42 | divcld 11153 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
44 | 43 | negcld 10723 | . . . . 5 ⊢ (𝜑 → -((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
45 | 39 | nnrecred 11430 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) |
46 | 45 | recnd 10407 | . . . . 5 ⊢ (𝜑 → (1 / 𝐾) ∈ ℂ) |
47 | 44, 46 | cxpcld 24895 | . . . 4 ⊢ (𝜑 → (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ) |
48 | 31, 47 | syl5eqel 2863 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
49 | ftalem4.8 | . . . 4 ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) | |
50 | ftalem4.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) ≠ 0) | |
51 | 36, 50 | absrpcld 14599 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+) |
52 | fzfid 13095 | . . . . . . 7 ⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) | |
53 | peano2nn0 11688 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
54 | 40, 53 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
55 | elfzuz 12659 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
56 | eluznn0 12068 | . . . . . . . . . . 11 ⊢ (((𝐾 + 1) ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ0) | |
57 | 54, 55, 56 | syl2an 589 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0) |
58 | 38 | ffvelrnda 6625 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
59 | 57, 58 | syldan 585 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
60 | expcl 13200 | . . . . . . . . . . 11 ⊢ ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇↑𝑘) ∈ ℂ) | |
61 | 48, 60 | sylan 575 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑇↑𝑘) ∈ ℂ) |
62 | 57, 61 | syldan 585 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇↑𝑘) ∈ ℂ) |
63 | 59, 62 | mulcld 10399 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴‘𝑘) · (𝑇↑𝑘)) ∈ ℂ) |
64 | 63 | abscld 14587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
65 | 52, 64 | fsumrecl 14876 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
66 | 63 | absge0d 14595 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
67 | 52, 64, 66 | fsumge0 14935 | . . . . . 6 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
68 | 65, 67 | ge0p1rpd 12215 | . . . . 5 ⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1) ∈ ℝ+) |
69 | 51, 68 | rpdivcld 12202 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) ∈ ℝ+) |
70 | 49, 69 | syl5eqel 2863 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
71 | ftalem4.9 | . . . 4 ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) | |
72 | 1rp 12145 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
73 | ifcl 4351 | . . . . 5 ⊢ ((1 ∈ ℝ+ ∧ 𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) | |
74 | 72, 70, 73 | sylancr 581 | . . . 4 ⊢ (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) |
75 | 71, 74 | syl5eqel 2863 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
76 | 48, 70, 75 | 3jca 1119 | . 2 ⊢ (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+)) |
77 | 30, 76 | jca 507 | 1 ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 {crab 3094 ⊆ wss 3792 ∅c0 4141 ifcif 4307 class class class wbr 4888 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 infcinf 8637 ℂcc 10272 ℝcr 10273 0cc0 10274 1c1 10275 + caddc 10277 · cmul 10279 < clt 10413 ≤ cle 10414 -cneg 10609 / cdiv 11034 ℕcn 11378 ℕ0cn0 11646 ℤ≥cuz 11996 ℝ+crp 12141 ...cfz 12647 ↑cexp 13182 abscabs 14385 Σcsu 14828 0𝑝c0p 23877 Polycply 24381 coeffccoe 24383 degcdgr 24384 ↑𝑐ccxp 24743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ioo 12495 df-ioc 12496 df-ico 12497 df-icc 12498 df-fz 12648 df-fzo 12789 df-fl 12916 df-mod 12992 df-seq 13124 df-exp 13183 df-fac 13383 df-bc 13412 df-hash 13440 df-shft 14218 df-cj 14250 df-re 14251 df-im 14252 df-sqrt 14386 df-abs 14387 df-limsup 14614 df-clim 14631 df-rlim 14632 df-sum 14829 df-ef 15204 df-sin 15206 df-cos 15207 df-pi 15209 df-struct 16261 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-starv 16357 df-sca 16358 df-vsca 16359 df-ip 16360 df-tset 16361 df-ple 16362 df-ds 16364 df-unif 16365 df-hom 16366 df-cco 16367 df-rest 16473 df-topn 16474 df-0g 16492 df-gsum 16493 df-topgen 16494 df-pt 16495 df-prds 16498 df-xrs 16552 df-qtop 16557 df-imas 16558 df-xps 16560 df-mre 16636 df-mrc 16637 df-acs 16639 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-mulg 17932 df-cntz 18137 df-cmn 18585 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-fbas 20143 df-fg 20144 df-cnfld 20147 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-cld 21235 df-ntr 21236 df-cls 21237 df-nei 21314 df-lp 21352 df-perf 21353 df-cn 21443 df-cnp 21444 df-haus 21531 df-tx 21778 df-hmeo 21971 df-fil 22062 df-fm 22154 df-flim 22155 df-flf 22156 df-xms 22537 df-ms 22538 df-tms 22539 df-cncf 23093 df-0p 23878 df-limc 24071 df-dv 24072 df-ply 24385 df-coe 24387 df-dgr 24388 df-log 24744 df-cxp 24745 |
This theorem is referenced by: ftalem5 25259 |
Copyright terms: Public domain | W3C validator |