Step | Hyp | Ref
| Expression |
1 | | ftalem4.6 |
. . . 4
β’ πΎ = inf({π β β β£ (π΄βπ) β 0}, β, < ) |
2 | | ssrab2 4076 |
. . . . . 6
β’ {π β β β£ (π΄βπ) β 0} β β |
3 | | nnuz 12869 |
. . . . . 6
β’ β =
(β€β₯β1) |
4 | 2, 3 | sseqtri 4017 |
. . . . 5
β’ {π β β β£ (π΄βπ) β 0} β
(β€β₯β1) |
5 | | fveq2 6890 |
. . . . . . . 8
β’ (π = π β (π΄βπ) = (π΄βπ)) |
6 | 5 | neeq1d 2998 |
. . . . . . 7
β’ (π = π β ((π΄βπ) β 0 β (π΄βπ) β 0)) |
7 | | ftalem.4 |
. . . . . . 7
β’ (π β π β β) |
8 | 7 | nnne0d 12266 |
. . . . . . . 8
β’ (π β π β 0) |
9 | | ftalem.3 |
. . . . . . . . . . 11
β’ (π β πΉ β (Polyβπ)) |
10 | | ftalem.2 |
. . . . . . . . . . . 12
β’ π = (degβπΉ) |
11 | | ftalem.1 |
. . . . . . . . . . . 12
β’ π΄ = (coeffβπΉ) |
12 | 10, 11 | dgreq0 26015 |
. . . . . . . . . . 11
β’ (πΉ β (Polyβπ) β (πΉ = 0π β (π΄βπ) = 0)) |
13 | 9, 12 | syl 17 |
. . . . . . . . . 10
β’ (π β (πΉ = 0π β (π΄βπ) = 0)) |
14 | | fveq2 6890 |
. . . . . . . . . . . 12
β’ (πΉ = 0π β
(degβπΉ) =
(degβ0π)) |
15 | | dgr0 26012 |
. . . . . . . . . . . 12
β’
(degβ0π) = 0 |
16 | 14, 15 | eqtrdi 2786 |
. . . . . . . . . . 11
β’ (πΉ = 0π β
(degβπΉ) =
0) |
17 | 10, 16 | eqtrid 2782 |
. . . . . . . . . 10
β’ (πΉ = 0π β
π = 0) |
18 | 13, 17 | syl6bir 253 |
. . . . . . . . 9
β’ (π β ((π΄βπ) = 0 β π = 0)) |
19 | 18 | necon3d 2959 |
. . . . . . . 8
β’ (π β (π β 0 β (π΄βπ) β 0)) |
20 | 8, 19 | mpd 15 |
. . . . . . 7
β’ (π β (π΄βπ) β 0) |
21 | 6, 7, 20 | elrabd 3684 |
. . . . . 6
β’ (π β π β {π β β β£ (π΄βπ) β 0}) |
22 | 21 | ne0d 4334 |
. . . . 5
β’ (π β {π β β β£ (π΄βπ) β 0} β β
) |
23 | | infssuzcl 12920 |
. . . . 5
β’ (({π β β β£ (π΄βπ) β 0} β
(β€β₯β1) β§ {π β β β£ (π΄βπ) β 0} β β
) β inf({π β β β£ (π΄βπ) β 0}, β, < ) β {π β β β£ (π΄βπ) β 0}) |
24 | 4, 22, 23 | sylancr 585 |
. . . 4
β’ (π β inf({π β β β£ (π΄βπ) β 0}, β, < ) β {π β β β£ (π΄βπ) β 0}) |
25 | 1, 24 | eqeltrid 2835 |
. . 3
β’ (π β πΎ β {π β β β£ (π΄βπ) β 0}) |
26 | | fveq2 6890 |
. . . . 5
β’ (π = πΎ β (π΄βπ) = (π΄βπΎ)) |
27 | 26 | neeq1d 2998 |
. . . 4
β’ (π = πΎ β ((π΄βπ) β 0 β (π΄βπΎ) β 0)) |
28 | 27 | elrab 3682 |
. . 3
β’ (πΎ β {π β β β£ (π΄βπ) β 0} β (πΎ β β β§ (π΄βπΎ) β 0)) |
29 | 25, 28 | sylib 217 |
. 2
β’ (π β (πΎ β β β§ (π΄βπΎ) β 0)) |
30 | | ftalem4.7 |
. . . 4
β’ π = (-((πΉβ0) / (π΄βπΎ))βπ(1 / πΎ)) |
31 | | plyf 25947 |
. . . . . . . . 9
β’ (πΉ β (Polyβπ) β πΉ:ββΆβ) |
32 | 9, 31 | syl 17 |
. . . . . . . 8
β’ (π β πΉ:ββΆβ) |
33 | | 0cn 11210 |
. . . . . . . 8
β’ 0 β
β |
34 | | ffvelcdm 7082 |
. . . . . . . 8
β’ ((πΉ:ββΆβ β§ 0
β β) β (πΉβ0) β β) |
35 | 32, 33, 34 | sylancl 584 |
. . . . . . 7
β’ (π β (πΉβ0) β β) |
36 | 11 | coef3 25981 |
. . . . . . . . 9
β’ (πΉ β (Polyβπ) β π΄:β0βΆβ) |
37 | 9, 36 | syl 17 |
. . . . . . . 8
β’ (π β π΄:β0βΆβ) |
38 | 29 | simpld 493 |
. . . . . . . . 9
β’ (π β πΎ β β) |
39 | 38 | nnnn0d 12536 |
. . . . . . . 8
β’ (π β πΎ β
β0) |
40 | 37, 39 | ffvelcdmd 7086 |
. . . . . . 7
β’ (π β (π΄βπΎ) β β) |
41 | 29 | simprd 494 |
. . . . . . 7
β’ (π β (π΄βπΎ) β 0) |
42 | 35, 40, 41 | divcld 11994 |
. . . . . 6
β’ (π β ((πΉβ0) / (π΄βπΎ)) β β) |
43 | 42 | negcld 11562 |
. . . . 5
β’ (π β -((πΉβ0) / (π΄βπΎ)) β β) |
44 | 38 | nnrecred 12267 |
. . . . . 6
β’ (π β (1 / πΎ) β β) |
45 | 44 | recnd 11246 |
. . . . 5
β’ (π β (1 / πΎ) β β) |
46 | 43, 45 | cxpcld 26452 |
. . . 4
β’ (π β (-((πΉβ0) / (π΄βπΎ))βπ(1 / πΎ)) β
β) |
47 | 30, 46 | eqeltrid 2835 |
. . 3
β’ (π β π β β) |
48 | | ftalem4.8 |
. . . 4
β’ π = ((absβ(πΉβ0)) / (Ξ£π β ((πΎ + 1)...π)(absβ((π΄βπ) Β· (πβπ))) + 1)) |
49 | | ftalem4.5 |
. . . . . 6
β’ (π β (πΉβ0) β 0) |
50 | 35, 49 | absrpcld 15399 |
. . . . 5
β’ (π β (absβ(πΉβ0)) β
β+) |
51 | | fzfid 13942 |
. . . . . . 7
β’ (π β ((πΎ + 1)...π) β Fin) |
52 | | peano2nn0 12516 |
. . . . . . . . . . . 12
β’ (πΎ β β0
β (πΎ + 1) β
β0) |
53 | 39, 52 | syl 17 |
. . . . . . . . . . 11
β’ (π β (πΎ + 1) β
β0) |
54 | | elfzuz 13501 |
. . . . . . . . . . 11
β’ (π β ((πΎ + 1)...π) β π β (β€β₯β(πΎ + 1))) |
55 | | eluznn0 12905 |
. . . . . . . . . . 11
β’ (((πΎ + 1) β β0
β§ π β
(β€β₯β(πΎ + 1))) β π β β0) |
56 | 53, 54, 55 | syl2an 594 |
. . . . . . . . . 10
β’ ((π β§ π β ((πΎ + 1)...π)) β π β β0) |
57 | 37 | ffvelcdmda 7085 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (π΄βπ) β β) |
58 | 56, 57 | syldan 589 |
. . . . . . . . 9
β’ ((π β§ π β ((πΎ + 1)...π)) β (π΄βπ) β β) |
59 | | expcl 14049 |
. . . . . . . . . 10
β’ ((π β β β§ π β β0)
β (πβπ) β
β) |
60 | 47, 56, 59 | syl2an2r 681 |
. . . . . . . . 9
β’ ((π β§ π β ((πΎ + 1)...π)) β (πβπ) β β) |
61 | 58, 60 | mulcld 11238 |
. . . . . . . 8
β’ ((π β§ π β ((πΎ + 1)...π)) β ((π΄βπ) Β· (πβπ)) β β) |
62 | 61 | abscld 15387 |
. . . . . . 7
β’ ((π β§ π β ((πΎ + 1)...π)) β (absβ((π΄βπ) Β· (πβπ))) β β) |
63 | 51, 62 | fsumrecl 15684 |
. . . . . 6
β’ (π β Ξ£π β ((πΎ + 1)...π)(absβ((π΄βπ) Β· (πβπ))) β β) |
64 | 61 | absge0d 15395 |
. . . . . . 7
β’ ((π β§ π β ((πΎ + 1)...π)) β 0 β€ (absβ((π΄βπ) Β· (πβπ)))) |
65 | 51, 62, 64 | fsumge0 15745 |
. . . . . 6
β’ (π β 0 β€ Ξ£π β ((πΎ + 1)...π)(absβ((π΄βπ) Β· (πβπ)))) |
66 | 63, 65 | ge0p1rpd 13050 |
. . . . 5
β’ (π β (Ξ£π β ((πΎ + 1)...π)(absβ((π΄βπ) Β· (πβπ))) + 1) β
β+) |
67 | 50, 66 | rpdivcld 13037 |
. . . 4
β’ (π β ((absβ(πΉβ0)) / (Ξ£π β ((πΎ + 1)...π)(absβ((π΄βπ) Β· (πβπ))) + 1)) β
β+) |
68 | 48, 67 | eqeltrid 2835 |
. . 3
β’ (π β π β
β+) |
69 | | ftalem4.9 |
. . . 4
β’ π = if(1 β€ π, 1, π) |
70 | | 1rp 12982 |
. . . . 5
β’ 1 β
β+ |
71 | | ifcl 4572 |
. . . . 5
β’ ((1
β β+ β§ π β β+) β if(1
β€ π, 1, π) β
β+) |
72 | 70, 68, 71 | sylancr 585 |
. . . 4
β’ (π β if(1 β€ π, 1, π) β
β+) |
73 | 69, 72 | eqeltrid 2835 |
. . 3
β’ (π β π β
β+) |
74 | 47, 68, 73 | 3jca 1126 |
. 2
β’ (π β (π β β β§ π β β+ β§ π β
β+)) |
75 | 29, 74 | jca 510 |
1
β’ (π β ((πΎ β β β§ (π΄βπΎ) β 0) β§ (π β β β§ π β β+ β§ π β
β+))) |