![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftalem4 | Structured version Visualization version GIF version |
Description: Lemma for fta 27141: Closure of the auxiliary variables for ftalem5 27138. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
Ref | Expression |
---|---|
ftalem.1 | ⊢ 𝐴 = (coeff‘𝐹) |
ftalem.2 | ⊢ 𝑁 = (deg‘𝐹) |
ftalem.3 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
ftalem.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
ftalem4.5 | ⊢ (𝜑 → (𝐹‘0) ≠ 0) |
ftalem4.6 | ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) |
ftalem4.7 | ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) |
ftalem4.8 | ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) |
ftalem4.9 | ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) |
Ref | Expression |
---|---|
ftalem4 | ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftalem4.6 | . . . 4 ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) | |
2 | ssrab2 4103 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ ℕ | |
3 | nnuz 12946 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | sseqtri 4045 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) |
5 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) | |
6 | 5 | neeq1d 3006 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝑁) ≠ 0)) |
7 | ftalem.4 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nnne0d 12343 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ≠ 0) |
9 | ftalem.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
10 | ftalem.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (deg‘𝐹) | |
11 | ftalem.1 | . . . . . . . . . . . 12 ⊢ 𝐴 = (coeff‘𝐹) | |
12 | 10, 11 | dgreq0 26325 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
14 | fveq2 6920 | . . . . . . . . . . . 12 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝)) | |
15 | dgr0 26322 | . . . . . . . . . . . 12 ⊢ (deg‘0𝑝) = 0 | |
16 | 14, 15 | eqtrdi 2796 | . . . . . . . . . . 11 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = 0) |
17 | 10, 16 | eqtrid 2792 | . . . . . . . . . 10 ⊢ (𝐹 = 0𝑝 → 𝑁 = 0) |
18 | 13, 17 | biimtrrdi 254 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴‘𝑁) = 0 → 𝑁 = 0)) |
19 | 18 | necon3d 2967 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 → (𝐴‘𝑁) ≠ 0)) |
20 | 8, 19 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
21 | 6, 7, 20 | elrabd 3710 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
22 | 21 | ne0d 4365 | . . . . 5 ⊢ (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) |
23 | infssuzcl 12997 | . . . . 5 ⊢ (({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) | |
24 | 4, 22, 23 | sylancr 586 | . . . 4 ⊢ (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
25 | 1, 24 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
26 | fveq2 6920 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝐴‘𝑛) = (𝐴‘𝐾)) | |
27 | 26 | neeq1d 3006 | . . . 4 ⊢ (𝑛 = 𝐾 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝐾) ≠ 0)) |
28 | 27 | elrab 3708 | . . 3 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
29 | 25, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
30 | ftalem4.7 | . . . 4 ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) | |
31 | plyf 26257 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
33 | 0cn 11282 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
34 | ffvelcdm 7115 | . . . . . . . 8 ⊢ ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ) | |
35 | 32, 33, 34 | sylancl 585 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) ∈ ℂ) |
36 | 11 | coef3 26291 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
37 | 9, 36 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
38 | 29 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
39 | 38 | nnnn0d 12613 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
40 | 37, 39 | ffvelcdmd 7119 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ∈ ℂ) |
41 | 29 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ≠ 0) |
42 | 35, 40, 41 | divcld 12070 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
43 | 42 | negcld 11634 | . . . . 5 ⊢ (𝜑 → -((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
44 | 38 | nnrecred 12344 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) |
45 | 44 | recnd 11318 | . . . . 5 ⊢ (𝜑 → (1 / 𝐾) ∈ ℂ) |
46 | 43, 45 | cxpcld 26768 | . . . 4 ⊢ (𝜑 → (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ) |
47 | 30, 46 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
48 | ftalem4.8 | . . . 4 ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) | |
49 | ftalem4.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) ≠ 0) | |
50 | 35, 49 | absrpcld 15497 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+) |
51 | fzfid 14024 | . . . . . . 7 ⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) | |
52 | peano2nn0 12593 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
53 | 39, 52 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
54 | elfzuz 13580 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
55 | eluznn0 12982 | . . . . . . . . . . 11 ⊢ (((𝐾 + 1) ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ0) | |
56 | 53, 54, 55 | syl2an 595 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0) |
57 | 37 | ffvelcdmda 7118 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
58 | 56, 57 | syldan 590 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
59 | expcl 14130 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇↑𝑘) ∈ ℂ) | |
60 | 47, 56, 59 | syl2an2r 684 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇↑𝑘) ∈ ℂ) |
61 | 58, 60 | mulcld 11310 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴‘𝑘) · (𝑇↑𝑘)) ∈ ℂ) |
62 | 61 | abscld 15485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
63 | 51, 62 | fsumrecl 15782 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
64 | 61 | absge0d 15493 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
65 | 51, 62, 64 | fsumge0 15843 | . . . . . 6 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
66 | 63, 65 | ge0p1rpd 13129 | . . . . 5 ⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1) ∈ ℝ+) |
67 | 50, 66 | rpdivcld 13116 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) ∈ ℝ+) |
68 | 48, 67 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
69 | ftalem4.9 | . . . 4 ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) | |
70 | 1rp 13061 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
71 | ifcl 4593 | . . . . 5 ⊢ ((1 ∈ ℝ+ ∧ 𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) | |
72 | 70, 68, 71 | sylancr 586 | . . . 4 ⊢ (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) |
73 | 69, 72 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
74 | 47, 68, 73 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+)) |
75 | 29, 74 | jca 511 | 1 ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ⊆ wss 3976 ∅c0 4352 ifcif 4548 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 infcinf 9510 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 -cneg 11521 / cdiv 11947 ℕcn 12293 ℕ0cn0 12553 ℤ≥cuz 12903 ℝ+crp 13057 ...cfz 13567 ↑cexp 14112 abscabs 15283 Σcsu 15734 0𝑝c0p 25723 Polycply 26243 coeffccoe 26245 degcdgr 26246 ↑𝑐ccxp 26615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 df-pi 16120 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-0p 25724 df-limc 25921 df-dv 25922 df-ply 26247 df-coe 26249 df-dgr 26250 df-log 26616 df-cxp 26617 |
This theorem is referenced by: ftalem5 27138 |
Copyright terms: Public domain | W3C validator |