Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem4 Structured version   Visualization version   GIF version

Theorem ftalem4 25659
 Description: Lemma for fta 25663: Closure of the auxiliary variables for ftalem5 25660. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem4 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)

Proof of Theorem ftalem4
StepHypRef Expression
1 ftalem4.6 . . . 4 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
2 ssrab2 4031 . . . . . 6 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
3 nnuz 12269 . . . . . 6 ℕ = (ℤ‘1)
42, 3sseqtri 3978 . . . . 5 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
5 fveq2 6652 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
65neeq1d 3070 . . . . . . 7 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
7 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
87nnne0d 11675 . . . . . . . 8 (𝜑𝑁 ≠ 0)
9 ftalem.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘𝑆))
10 ftalem.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐹)
11 ftalem.1 . . . . . . . . . . . 12 𝐴 = (coeff‘𝐹)
1210, 11dgreq0 24860 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
139, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
14 fveq2 6652 . . . . . . . . . . . 12 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
15 dgr0 24857 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
1614, 15syl6eq 2873 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1710, 16syl5eq 2869 . . . . . . . . . 10 (𝐹 = 0𝑝𝑁 = 0)
1813, 17syl6bir 257 . . . . . . . . 9 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1918necon3d 3032 . . . . . . . 8 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
208, 19mpd 15 . . . . . . 7 (𝜑 → (𝐴𝑁) ≠ 0)
216, 7, 20elrabd 3657 . . . . . 6 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2221ne0d 4273 . . . . 5 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
23 infssuzcl 12320 . . . . 5 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
244, 22, 23sylancr 590 . . . 4 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
251, 24eqeltrid 2918 . . 3 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
26 fveq2 6652 . . . . 5 (𝑛 = 𝐾 → (𝐴𝑛) = (𝐴𝐾))
2726neeq1d 3070 . . . 4 (𝑛 = 𝐾 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝐾) ≠ 0))
2827elrab 3655 . . 3 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2925, 28sylib 221 . 2 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
30 ftalem4.7 . . . 4 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
31 plyf 24793 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
329, 31syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
33 0cn 10622 . . . . . . . 8 0 ∈ ℂ
34 ffvelrn 6831 . . . . . . . 8 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3532, 33, 34sylancl 589 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ ℂ)
3611coef3 24827 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
379, 36syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
3829simpld 498 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
3938nnnn0d 11943 . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
4037, 39ffvelrnd 6834 . . . . . . 7 (𝜑 → (𝐴𝐾) ∈ ℂ)
4129simprd 499 . . . . . . 7 (𝜑 → (𝐴𝐾) ≠ 0)
4235, 40, 41divcld 11405 . . . . . 6 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
4342negcld 10973 . . . . 5 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
4438nnrecred 11676 . . . . . 6 (𝜑 → (1 / 𝐾) ∈ ℝ)
4544recnd 10658 . . . . 5 (𝜑 → (1 / 𝐾) ∈ ℂ)
4643, 45cxpcld 25297 . . . 4 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ)
4730, 46eqeltrid 2918 . . 3 (𝜑𝑇 ∈ ℂ)
48 ftalem4.8 . . . 4 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
49 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
5035, 49absrpcld 14799 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+)
51 fzfid 13336 . . . . . . 7 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
52 peano2nn0 11925 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
5339, 52syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾 + 1) ∈ ℕ0)
54 elfzuz 12898 . . . . . . . . . . 11 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
55 eluznn0 12305 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
5653, 54, 55syl2an 598 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
5737ffvelrnda 6833 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5856, 57syldan 594 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
59 expcl 13443 . . . . . . . . . 10 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
6047, 56, 59syl2an2r 684 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
6158, 60mulcld 10650 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
6261abscld 14787 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
6351, 62fsumrecl 15082 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
6461absge0d 14795 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
6551, 62, 64fsumge0 15141 . . . . . 6 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
6663, 65ge0p1rpd 12449 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ+)
6750, 66rpdivcld 12436 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)) ∈ ℝ+)
6848, 67eqeltrid 2918 . . 3 (𝜑𝑈 ∈ ℝ+)
69 ftalem4.9 . . . 4 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
70 1rp 12381 . . . . 5 1 ∈ ℝ+
71 ifcl 4483 . . . . 5 ((1 ∈ ℝ+𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+)
7270, 68, 71sylancr 590 . . . 4 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+)
7369, 72eqeltrid 2918 . . 3 (𝜑𝑋 ∈ ℝ+)
7447, 68, 733jca 1125 . 2 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
7529, 74jca 515 1 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  {crab 3134   ⊆ wss 3908  ∅c0 4265  ifcif 4439   class class class wbr 5042  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140  infcinf 8893  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664   ≤ cle 10665  -cneg 10860   / cdiv 11286  ℕcn 11625  ℕ0cn0 11885  ℤ≥cuz 12231  ℝ+crp 12377  ...cfz 12885  ↑cexp 13425  abscabs 14584  Σcsu 15033  0𝑝c0p 24271  Polycply 24779  coeffccoe 24781  degcdgr 24782  ↑𝑐ccxp 25145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-sin 15414  df-cos 15415  df-pi 15417  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-0p 24272  df-limc 24467  df-dv 24468  df-ply 24783  df-coe 24785  df-dgr 24786  df-log 25146  df-cxp 25147 This theorem is referenced by:  ftalem5  25660
 Copyright terms: Public domain W3C validator