MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem4 Structured version   Visualization version   GIF version

Theorem ftalem4 27133
Description: Lemma for fta 27137: Closure of the auxiliary variables for ftalem5 27134. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem4 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘   𝑆,𝑘   𝑇,𝑘   𝑘,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)

Proof of Theorem ftalem4
StepHypRef Expression
1 ftalem4.6 . . . 4 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
2 ssrab2 4089 . . . . . 6 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
3 nnuz 12918 . . . . . 6 ℕ = (ℤ‘1)
42, 3sseqtri 4031 . . . . 5 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
5 fveq2 6906 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
65neeq1d 2997 . . . . . . 7 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
7 ftalem.4 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
87nnne0d 12313 . . . . . . . 8 (𝜑𝑁 ≠ 0)
9 ftalem.3 . . . . . . . . . . 11 (𝜑𝐹 ∈ (Poly‘𝑆))
10 ftalem.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐹)
11 ftalem.1 . . . . . . . . . . . 12 𝐴 = (coeff‘𝐹)
1210, 11dgreq0 26319 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
139, 12syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
14 fveq2 6906 . . . . . . . . . . . 12 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
15 dgr0 26316 . . . . . . . . . . . 12 (deg‘0𝑝) = 0
1614, 15eqtrdi 2790 . . . . . . . . . . 11 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
1710, 16eqtrid 2786 . . . . . . . . . 10 (𝐹 = 0𝑝𝑁 = 0)
1813, 17biimtrrdi 254 . . . . . . . . 9 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
1918necon3d 2958 . . . . . . . 8 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
208, 19mpd 15 . . . . . . 7 (𝜑 → (𝐴𝑁) ≠ 0)
216, 7, 20elrabd 3696 . . . . . 6 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2221ne0d 4347 . . . . 5 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
23 infssuzcl 12971 . . . . 5 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
244, 22, 23sylancr 587 . . . 4 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
251, 24eqeltrid 2842 . . 3 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
26 fveq2 6906 . . . . 5 (𝑛 = 𝐾 → (𝐴𝑛) = (𝐴𝐾))
2726neeq1d 2997 . . . 4 (𝑛 = 𝐾 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝐾) ≠ 0))
2827elrab 3694 . . 3 (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2925, 28sylib 218 . 2 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
30 ftalem4.7 . . . 4 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
31 plyf 26251 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
329, 31syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
33 0cn 11250 . . . . . . . 8 0 ∈ ℂ
34 ffvelcdm 7100 . . . . . . . 8 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
3532, 33, 34sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ ℂ)
3611coef3 26285 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
379, 36syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
3829simpld 494 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
3938nnnn0d 12584 . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
4037, 39ffvelcdmd 7104 . . . . . . 7 (𝜑 → (𝐴𝐾) ∈ ℂ)
4129simprd 495 . . . . . . 7 (𝜑 → (𝐴𝐾) ≠ 0)
4235, 40, 41divcld 12040 . . . . . 6 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
4342negcld 11604 . . . . 5 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
4438nnrecred 12314 . . . . . 6 (𝜑 → (1 / 𝐾) ∈ ℝ)
4544recnd 11286 . . . . 5 (𝜑 → (1 / 𝐾) ∈ ℂ)
4643, 45cxpcld 26764 . . . 4 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ)
4730, 46eqeltrid 2842 . . 3 (𝜑𝑇 ∈ ℂ)
48 ftalem4.8 . . . 4 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
49 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
5035, 49absrpcld 15483 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+)
51 fzfid 14010 . . . . . . 7 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
52 peano2nn0 12563 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
5339, 52syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾 + 1) ∈ ℕ0)
54 elfzuz 13556 . . . . . . . . . . 11 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
55 eluznn0 12956 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
5653, 54, 55syl2an 596 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
5737ffvelcdmda 7103 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
5856, 57syldan 591 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
59 expcl 14116 . . . . . . . . . 10 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
6047, 56, 59syl2an2r 685 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
6158, 60mulcld 11278 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
6261abscld 15471 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
6351, 62fsumrecl 15766 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
6461absge0d 15479 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
6551, 62, 64fsumge0 15827 . . . . . 6 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
6663, 65ge0p1rpd 13104 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ+)
6750, 66rpdivcld 13091 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)) ∈ ℝ+)
6848, 67eqeltrid 2842 . . 3 (𝜑𝑈 ∈ ℝ+)
69 ftalem4.9 . . . 4 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
70 1rp 13035 . . . . 5 1 ∈ ℝ+
71 ifcl 4575 . . . . 5 ((1 ∈ ℝ+𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+)
7270, 68, 71sylancr 587 . . . 4 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+)
7369, 72eqeltrid 2842 . . 3 (𝜑𝑋 ∈ ℝ+)
7447, 68, 733jca 1127 . 2 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
7529, 74jca 511 1 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  {crab 3432  wss 3962  c0 4338  ifcif 4530   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  infcinf 9478  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  -cneg 11490   / cdiv 11917  cn 12263  0cn0 12523  cuz 12875  +crp 13031  ...cfz 13543  cexp 14098  abscabs 15269  Σcsu 15718  0𝑝c0p 25717  Polycply 26237  coeffccoe 26239  degcdgr 26240  𝑐ccxp 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-0p 25718  df-limc 25915  df-dv 25916  df-ply 26241  df-coe 26243  df-dgr 26244  df-log 26612  df-cxp 26613
This theorem is referenced by:  ftalem5  27134
  Copyright terms: Public domain W3C validator