| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftalem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for fta 27007: Closure of the auxiliary variables for ftalem5 27004. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
| Ref | Expression |
|---|---|
| ftalem.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| ftalem.2 | ⊢ 𝑁 = (deg‘𝐹) |
| ftalem.3 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| ftalem.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| ftalem4.5 | ⊢ (𝜑 → (𝐹‘0) ≠ 0) |
| ftalem4.6 | ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) |
| ftalem4.7 | ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) |
| ftalem4.8 | ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) |
| ftalem4.9 | ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) |
| Ref | Expression |
|---|---|
| ftalem4 | ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftalem4.6 | . . . 4 ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) | |
| 2 | ssrab2 4033 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ ℕ | |
| 3 | nnuz 12797 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 2, 3 | sseqtri 3986 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) |
| 5 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) | |
| 6 | 5 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝑁) ≠ 0)) |
| 7 | ftalem.4 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | 7 | nnne0d 12197 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 9 | ftalem.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 10 | ftalem.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (deg‘𝐹) | |
| 11 | ftalem.1 | . . . . . . . . . . . 12 ⊢ 𝐴 = (coeff‘𝐹) | |
| 12 | 10, 11 | dgreq0 26188 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
| 13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
| 14 | fveq2 6826 | . . . . . . . . . . . 12 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝)) | |
| 15 | dgr0 26185 | . . . . . . . . . . . 12 ⊢ (deg‘0𝑝) = 0 | |
| 16 | 14, 15 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = 0) |
| 17 | 10, 16 | eqtrid 2776 | . . . . . . . . . 10 ⊢ (𝐹 = 0𝑝 → 𝑁 = 0) |
| 18 | 13, 17 | biimtrrdi 254 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴‘𝑁) = 0 → 𝑁 = 0)) |
| 19 | 18 | necon3d 2946 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 → (𝐴‘𝑁) ≠ 0)) |
| 20 | 8, 19 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
| 21 | 6, 7, 20 | elrabd 3652 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
| 22 | 21 | ne0d 4295 | . . . . 5 ⊢ (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) |
| 23 | infssuzcl 12852 | . . . . 5 ⊢ (({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) | |
| 24 | 4, 22, 23 | sylancr 587 | . . . 4 ⊢ (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
| 25 | 1, 24 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
| 26 | fveq2 6826 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝐴‘𝑛) = (𝐴‘𝐾)) | |
| 27 | 26 | neeq1d 2984 | . . . 4 ⊢ (𝑛 = 𝐾 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝐾) ≠ 0)) |
| 28 | 27 | elrab 3650 | . . 3 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
| 29 | 25, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
| 30 | ftalem4.7 | . . . 4 ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) | |
| 31 | plyf 26120 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 33 | 0cn 11126 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 34 | ffvelcdm 7019 | . . . . . . . 8 ⊢ ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ) | |
| 35 | 32, 33, 34 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) ∈ ℂ) |
| 36 | 11 | coef3 26154 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 37 | 9, 36 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 38 | 29 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 39 | 38 | nnnn0d 12464 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 40 | 37, 39 | ffvelcdmd 7023 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ∈ ℂ) |
| 41 | 29 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ≠ 0) |
| 42 | 35, 40, 41 | divcld 11919 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
| 43 | 42 | negcld 11481 | . . . . 5 ⊢ (𝜑 → -((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
| 44 | 38 | nnrecred 12198 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) |
| 45 | 44 | recnd 11162 | . . . . 5 ⊢ (𝜑 → (1 / 𝐾) ∈ ℂ) |
| 46 | 43, 45 | cxpcld 26634 | . . . 4 ⊢ (𝜑 → (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ) |
| 47 | 30, 46 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 48 | ftalem4.8 | . . . 4 ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) | |
| 49 | ftalem4.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) ≠ 0) | |
| 50 | 35, 49 | absrpcld 15377 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+) |
| 51 | fzfid 13899 | . . . . . . 7 ⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) | |
| 52 | peano2nn0 12443 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
| 53 | 39, 52 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
| 54 | elfzuz 13442 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
| 55 | eluznn0 12837 | . . . . . . . . . . 11 ⊢ (((𝐾 + 1) ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ0) | |
| 56 | 53, 54, 55 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0) |
| 57 | 37 | ffvelcdmda 7022 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 58 | 56, 57 | syldan 591 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 59 | expcl 14005 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇↑𝑘) ∈ ℂ) | |
| 60 | 47, 56, 59 | syl2an2r 685 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇↑𝑘) ∈ ℂ) |
| 61 | 58, 60 | mulcld 11154 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴‘𝑘) · (𝑇↑𝑘)) ∈ ℂ) |
| 62 | 61 | abscld 15365 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
| 63 | 51, 62 | fsumrecl 15660 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
| 64 | 61 | absge0d 15373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
| 65 | 51, 62, 64 | fsumge0 15721 | . . . . . 6 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
| 66 | 63, 65 | ge0p1rpd 12986 | . . . . 5 ⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1) ∈ ℝ+) |
| 67 | 50, 66 | rpdivcld 12973 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) ∈ ℝ+) |
| 68 | 48, 67 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| 69 | ftalem4.9 | . . . 4 ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) | |
| 70 | 1rp 12916 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
| 71 | ifcl 4524 | . . . . 5 ⊢ ((1 ∈ ℝ+ ∧ 𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) | |
| 72 | 70, 68, 71 | sylancr 587 | . . . 4 ⊢ (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) |
| 73 | 69, 72 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| 74 | 47, 68, 73 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+)) |
| 75 | 29, 74 | jca 511 | 1 ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 ⊆ wss 3905 ∅c0 4286 ifcif 4478 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 infcinf 9350 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 -cneg 11367 / cdiv 11796 ℕcn 12147 ℕ0cn0 12403 ℤ≥cuz 12754 ℝ+crp 12912 ...cfz 13429 ↑cexp 13987 abscabs 15160 Σcsu 15612 0𝑝c0p 25587 Polycply 26106 coeffccoe 26108 degcdgr 26109 ↑𝑐ccxp 26481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ioc 13272 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-fac 14200 df-bc 14229 df-hash 14257 df-shft 14993 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-limsup 15397 df-clim 15414 df-rlim 15415 df-sum 15613 df-ef 15993 df-sin 15995 df-cos 15996 df-pi 15998 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-lp 23040 df-perf 23041 df-cn 23131 df-cnp 23132 df-haus 23219 df-tx 23466 df-hmeo 23659 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24788 df-0p 25588 df-limc 25784 df-dv 25785 df-ply 26110 df-coe 26112 df-dgr 26113 df-log 26482 df-cxp 26483 |
| This theorem is referenced by: ftalem5 27004 |
| Copyright terms: Public domain | W3C validator |