Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ftalem4 | Structured version Visualization version GIF version |
Description: Lemma for fta 26300: Closure of the auxiliary variables for ftalem5 26297. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
Ref | Expression |
---|---|
ftalem.1 | ⊢ 𝐴 = (coeff‘𝐹) |
ftalem.2 | ⊢ 𝑁 = (deg‘𝐹) |
ftalem.3 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
ftalem.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
ftalem4.5 | ⊢ (𝜑 → (𝐹‘0) ≠ 0) |
ftalem4.6 | ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) |
ftalem4.7 | ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) |
ftalem4.8 | ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) |
ftalem4.9 | ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) |
Ref | Expression |
---|---|
ftalem4 | ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftalem4.6 | . . . 4 ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) | |
2 | ssrab2 4023 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ ℕ | |
3 | nnuz 12691 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
4 | 2, 3 | sseqtri 3966 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) |
5 | fveq2 6809 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) | |
6 | 5 | neeq1d 3001 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝑁) ≠ 0)) |
7 | ftalem.4 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nnne0d 12093 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ≠ 0) |
9 | ftalem.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
10 | ftalem.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (deg‘𝐹) | |
11 | ftalem.1 | . . . . . . . . . . . 12 ⊢ 𝐴 = (coeff‘𝐹) | |
12 | 10, 11 | dgreq0 25497 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
14 | fveq2 6809 | . . . . . . . . . . . 12 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝)) | |
15 | dgr0 25494 | . . . . . . . . . . . 12 ⊢ (deg‘0𝑝) = 0 | |
16 | 14, 15 | eqtrdi 2793 | . . . . . . . . . . 11 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = 0) |
17 | 10, 16 | eqtrid 2789 | . . . . . . . . . 10 ⊢ (𝐹 = 0𝑝 → 𝑁 = 0) |
18 | 13, 17 | syl6bir 253 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴‘𝑁) = 0 → 𝑁 = 0)) |
19 | 18 | necon3d 2962 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 → (𝐴‘𝑁) ≠ 0)) |
20 | 8, 19 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
21 | 6, 7, 20 | elrabd 3635 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
22 | 21 | ne0d 4279 | . . . . 5 ⊢ (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) |
23 | infssuzcl 12742 | . . . . 5 ⊢ (({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) | |
24 | 4, 22, 23 | sylancr 587 | . . . 4 ⊢ (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
25 | 1, 24 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
26 | fveq2 6809 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝐴‘𝑛) = (𝐴‘𝐾)) | |
27 | 26 | neeq1d 3001 | . . . 4 ⊢ (𝑛 = 𝐾 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝐾) ≠ 0)) |
28 | 27 | elrab 3633 | . . 3 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
29 | 25, 28 | sylib 217 | . 2 ⊢ (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
30 | ftalem4.7 | . . . 4 ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) | |
31 | plyf 25430 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
33 | 0cn 11037 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
34 | ffvelcdm 6996 | . . . . . . . 8 ⊢ ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ) | |
35 | 32, 33, 34 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) ∈ ℂ) |
36 | 11 | coef3 25464 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
37 | 9, 36 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
38 | 29 | simpld 495 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
39 | 38 | nnnn0d 12363 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
40 | 37, 39 | ffvelcdmd 6999 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ∈ ℂ) |
41 | 29 | simprd 496 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ≠ 0) |
42 | 35, 40, 41 | divcld 11821 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
43 | 42 | negcld 11389 | . . . . 5 ⊢ (𝜑 → -((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
44 | 38 | nnrecred 12094 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) |
45 | 44 | recnd 11073 | . . . . 5 ⊢ (𝜑 → (1 / 𝐾) ∈ ℂ) |
46 | 43, 45 | cxpcld 25934 | . . . 4 ⊢ (𝜑 → (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ) |
47 | 30, 46 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
48 | ftalem4.8 | . . . 4 ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) | |
49 | ftalem4.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) ≠ 0) | |
50 | 35, 49 | absrpcld 15229 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+) |
51 | fzfid 13763 | . . . . . . 7 ⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) | |
52 | peano2nn0 12343 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
53 | 39, 52 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
54 | elfzuz 13322 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
55 | eluznn0 12727 | . . . . . . . . . . 11 ⊢ (((𝐾 + 1) ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ0) | |
56 | 53, 54, 55 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0) |
57 | 37 | ffvelcdmda 6998 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
58 | 56, 57 | syldan 591 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
59 | expcl 13870 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇↑𝑘) ∈ ℂ) | |
60 | 47, 56, 59 | syl2an2r 682 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇↑𝑘) ∈ ℂ) |
61 | 58, 60 | mulcld 11065 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴‘𝑘) · (𝑇↑𝑘)) ∈ ℂ) |
62 | 61 | abscld 15217 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
63 | 51, 62 | fsumrecl 15515 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
64 | 61 | absge0d 15225 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
65 | 51, 62, 64 | fsumge0 15576 | . . . . . 6 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
66 | 63, 65 | ge0p1rpd 12872 | . . . . 5 ⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1) ∈ ℝ+) |
67 | 50, 66 | rpdivcld 12859 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) ∈ ℝ+) |
68 | 48, 67 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
69 | ftalem4.9 | . . . 4 ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) | |
70 | 1rp 12804 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
71 | ifcl 4514 | . . . . 5 ⊢ ((1 ∈ ℝ+ ∧ 𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) | |
72 | 70, 68, 71 | sylancr 587 | . . . 4 ⊢ (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) |
73 | 69, 72 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
74 | 47, 68, 73 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+)) |
75 | 29, 74 | jca 512 | 1 ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 {crab 3404 ⊆ wss 3896 ∅c0 4266 ifcif 4469 class class class wbr 5085 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 infcinf 9268 ℂcc 10939 ℝcr 10940 0cc0 10941 1c1 10942 + caddc 10944 · cmul 10946 < clt 11079 ≤ cle 11080 -cneg 11276 / cdiv 11702 ℕcn 12043 ℕ0cn0 12303 ℤ≥cuz 12652 ℝ+crp 12800 ...cfz 13309 ↑cexp 13852 abscabs 15014 Σcsu 15466 0𝑝c0p 24904 Polycply 25416 coeffccoe 25418 degcdgr 25419 ↑𝑐ccxp 25782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 ax-addf 11020 ax-mulf 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-2o 8343 df-er 8544 df-map 8663 df-pm 8664 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-fi 9238 df-sup 9269 df-inf 9270 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-q 12759 df-rp 12801 df-xneg 12918 df-xadd 12919 df-xmul 12920 df-ioo 13153 df-ioc 13154 df-ico 13155 df-icc 13156 df-fz 13310 df-fzo 13453 df-fl 13582 df-mod 13660 df-seq 13792 df-exp 13853 df-fac 14058 df-bc 14087 df-hash 14115 df-shft 14847 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-limsup 15249 df-clim 15266 df-rlim 15267 df-sum 15467 df-ef 15846 df-sin 15848 df-cos 15849 df-pi 15851 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-starv 17044 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-hom 17053 df-cco 17054 df-rest 17200 df-topn 17201 df-0g 17219 df-gsum 17220 df-topgen 17221 df-pt 17222 df-prds 17225 df-xrs 17280 df-qtop 17285 df-imas 17286 df-xps 17288 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-mulg 18768 df-cntz 18990 df-cmn 19455 df-psmet 20660 df-xmet 20661 df-met 20662 df-bl 20663 df-mopn 20664 df-fbas 20665 df-fg 20666 df-cnfld 20669 df-top 22114 df-topon 22131 df-topsp 22153 df-bases 22167 df-cld 22241 df-ntr 22242 df-cls 22243 df-nei 22320 df-lp 22358 df-perf 22359 df-cn 22449 df-cnp 22450 df-haus 22537 df-tx 22784 df-hmeo 22977 df-fil 23068 df-fm 23160 df-flim 23161 df-flf 23162 df-xms 23544 df-ms 23545 df-tms 23546 df-cncf 24112 df-0p 24905 df-limc 25101 df-dv 25102 df-ply 25420 df-coe 25422 df-dgr 25423 df-log 25783 df-cxp 25784 |
This theorem is referenced by: ftalem5 26297 |
Copyright terms: Public domain | W3C validator |