| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftalem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for fta 27012: Closure of the auxiliary variables for ftalem5 27009. (Contributed by Mario Carneiro, 20-Sep-2014.) (Revised by AV, 28-Sep-2020.) |
| Ref | Expression |
|---|---|
| ftalem.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| ftalem.2 | ⊢ 𝑁 = (deg‘𝐹) |
| ftalem.3 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| ftalem.4 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| ftalem4.5 | ⊢ (𝜑 → (𝐹‘0) ≠ 0) |
| ftalem4.6 | ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) |
| ftalem4.7 | ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) |
| ftalem4.8 | ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) |
| ftalem4.9 | ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) |
| Ref | Expression |
|---|---|
| ftalem4 | ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftalem4.6 | . . . 4 ⊢ 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) | |
| 2 | ssrab2 4025 | . . . . . 6 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ ℕ | |
| 3 | nnuz 12770 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 4 | 2, 3 | sseqtri 3978 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) |
| 5 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) | |
| 6 | 5 | neeq1d 2987 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝑁) ≠ 0)) |
| 7 | ftalem.4 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 8 | 7 | nnne0d 12170 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 9 | ftalem.3 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 10 | ftalem.2 | . . . . . . . . . . . 12 ⊢ 𝑁 = (deg‘𝐹) | |
| 11 | ftalem.1 | . . . . . . . . . . . 12 ⊢ 𝐴 = (coeff‘𝐹) | |
| 12 | 10, 11 | dgreq0 26193 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
| 13 | 9, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑁) = 0)) |
| 14 | fveq2 6817 | . . . . . . . . . . . 12 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝)) | |
| 15 | dgr0 26190 | . . . . . . . . . . . 12 ⊢ (deg‘0𝑝) = 0 | |
| 16 | 14, 15 | eqtrdi 2782 | . . . . . . . . . . 11 ⊢ (𝐹 = 0𝑝 → (deg‘𝐹) = 0) |
| 17 | 10, 16 | eqtrid 2778 | . . . . . . . . . 10 ⊢ (𝐹 = 0𝑝 → 𝑁 = 0) |
| 18 | 13, 17 | biimtrrdi 254 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐴‘𝑁) = 0 → 𝑁 = 0)) |
| 19 | 18 | necon3d 2949 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 ≠ 0 → (𝐴‘𝑁) ≠ 0)) |
| 20 | 8, 19 | mpd 15 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
| 21 | 6, 7, 20 | elrabd 3644 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
| 22 | 21 | ne0d 4287 | . . . . 5 ⊢ (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) |
| 23 | infssuzcl 12825 | . . . . 5 ⊢ (({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) | |
| 24 | 4, 22, 23 | sylancr 587 | . . . 4 ⊢ (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
| 25 | 1, 24 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0}) |
| 26 | fveq2 6817 | . . . . 5 ⊢ (𝑛 = 𝐾 → (𝐴‘𝑛) = (𝐴‘𝐾)) | |
| 27 | 26 | neeq1d 2987 | . . . 4 ⊢ (𝑛 = 𝐾 → ((𝐴‘𝑛) ≠ 0 ↔ (𝐴‘𝐾) ≠ 0)) |
| 28 | 27 | elrab 3642 | . . 3 ⊢ (𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴‘𝑛) ≠ 0} ↔ (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
| 29 | 25, 28 | sylib 218 | . 2 ⊢ (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0)) |
| 30 | ftalem4.7 | . . . 4 ⊢ 𝑇 = (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) | |
| 31 | plyf 26125 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 32 | 9, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 33 | 0cn 11099 | . . . . . . . 8 ⊢ 0 ∈ ℂ | |
| 34 | ffvelcdm 7009 | . . . . . . . 8 ⊢ ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ) | |
| 35 | 32, 33, 34 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘0) ∈ ℂ) |
| 36 | 11 | coef3 26159 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 37 | 9, 36 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 38 | 29 | simpld 494 | . . . . . . . . 9 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 39 | 38 | nnnn0d 12437 | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 40 | 37, 39 | ffvelcdmd 7013 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ∈ ℂ) |
| 41 | 29 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → (𝐴‘𝐾) ≠ 0) |
| 42 | 35, 40, 41 | divcld 11892 | . . . . . 6 ⊢ (𝜑 → ((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
| 43 | 42 | negcld 11454 | . . . . 5 ⊢ (𝜑 → -((𝐹‘0) / (𝐴‘𝐾)) ∈ ℂ) |
| 44 | 38 | nnrecred 12171 | . . . . . 6 ⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) |
| 45 | 44 | recnd 11135 | . . . . 5 ⊢ (𝜑 → (1 / 𝐾) ∈ ℂ) |
| 46 | 43, 45 | cxpcld 26639 | . . . 4 ⊢ (𝜑 → (-((𝐹‘0) / (𝐴‘𝐾))↑𝑐(1 / 𝐾)) ∈ ℂ) |
| 47 | 30, 46 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 48 | ftalem4.8 | . . . 4 ⊢ 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) | |
| 49 | ftalem4.5 | . . . . . 6 ⊢ (𝜑 → (𝐹‘0) ≠ 0) | |
| 50 | 35, 49 | absrpcld 15353 | . . . . 5 ⊢ (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ+) |
| 51 | fzfid 13875 | . . . . . . 7 ⊢ (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin) | |
| 52 | peano2nn0 12416 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0) | |
| 53 | 39, 52 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 + 1) ∈ ℕ0) |
| 54 | elfzuz 13415 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) | |
| 55 | eluznn0 12810 | . . . . . . . . . . 11 ⊢ (((𝐾 + 1) ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘(𝐾 + 1))) → 𝑘 ∈ ℕ0) | |
| 56 | 53, 54, 55 | syl2an 596 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0) |
| 57 | 37 | ffvelcdmda 7012 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 58 | 56, 57 | syldan 591 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 59 | expcl 13981 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇↑𝑘) ∈ ℂ) | |
| 60 | 47, 56, 59 | syl2an2r 685 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇↑𝑘) ∈ ℂ) |
| 61 | 58, 60 | mulcld 11127 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴‘𝑘) · (𝑇↑𝑘)) ∈ ℂ) |
| 62 | 61 | abscld 15341 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
| 63 | 51, 62 | fsumrecl 15636 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) ∈ ℝ) |
| 64 | 61 | absge0d 15349 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
| 65 | 51, 62, 64 | fsumge0 15697 | . . . . . 6 ⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘)))) |
| 66 | 63, 65 | ge0p1rpd 12959 | . . . . 5 ⊢ (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1) ∈ ℝ+) |
| 67 | 50, 66 | rpdivcld 12946 | . . . 4 ⊢ (𝜑 → ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴‘𝑘) · (𝑇↑𝑘))) + 1)) ∈ ℝ+) |
| 68 | 48, 67 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝑈 ∈ ℝ+) |
| 69 | ftalem4.9 | . . . 4 ⊢ 𝑋 = if(1 ≤ 𝑈, 1, 𝑈) | |
| 70 | 1rp 12889 | . . . . 5 ⊢ 1 ∈ ℝ+ | |
| 71 | ifcl 4516 | . . . . 5 ⊢ ((1 ∈ ℝ+ ∧ 𝑈 ∈ ℝ+) → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) | |
| 72 | 70, 68, 71 | sylancr 587 | . . . 4 ⊢ (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ∈ ℝ+) |
| 73 | 69, 72 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| 74 | 47, 68, 73 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+)) |
| 75 | 29, 74 | jca 511 | 1 ⊢ (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴‘𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3897 ∅c0 4278 ifcif 4470 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 infcinf 9320 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 ≤ cle 11142 -cneg 11340 / cdiv 11769 ℕcn 12120 ℕ0cn0 12376 ℤ≥cuz 12727 ℝ+crp 12885 ...cfz 13402 ↑cexp 13963 abscabs 15136 Σcsu 15588 0𝑝c0p 25592 Polycply 26111 coeffccoe 26113 degcdgr 26114 ↑𝑐ccxp 26486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 df-sin 15971 df-cos 15972 df-pi 15974 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-0p 25593 df-limc 25789 df-dv 25790 df-ply 26115 df-coe 26117 df-dgr 26118 df-log 26487 df-cxp 26488 |
| This theorem is referenced by: ftalem5 27009 |
| Copyright terms: Public domain | W3C validator |