Proof of Theorem eflogeq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | efcl 16119 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) ∈
ℂ) | 
| 2 |  | efne0 16134 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) ≠
0) | 
| 3 | 1, 2 | logcld 26613 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(log‘(exp‘𝐴))
∈ ℂ) | 
| 4 |  | efsub 16137 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(log‘(exp‘𝐴))
∈ ℂ) → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = ((exp‘𝐴) /
(exp‘(log‘(exp‘𝐴))))) | 
| 5 | 3, 4 | mpdan 687 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
(exp‘(𝐴 −
(log‘(exp‘𝐴))))
= ((exp‘𝐴) /
(exp‘(log‘(exp‘𝐴))))) | 
| 6 |  | eflog 26619 | . . . . . . . . 9
⊢
(((exp‘𝐴)
∈ ℂ ∧ (exp‘𝐴) ≠ 0) →
(exp‘(log‘(exp‘𝐴))) = (exp‘𝐴)) | 
| 7 | 1, 2, 6 | syl2anc 584 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘(log‘(exp‘𝐴))) = (exp‘𝐴)) | 
| 8 | 7 | oveq2d 7448 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
((exp‘𝐴) /
(exp‘(log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘𝐴))) | 
| 9 | 1, 2 | dividd 12042 | . . . . . . 7
⊢ (𝐴 ∈ ℂ →
((exp‘𝐴) /
(exp‘𝐴)) =
1) | 
| 10 | 5, 8, 9 | 3eqtrd 2780 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘(𝐴 −
(log‘(exp‘𝐴))))
= 1) | 
| 11 |  | subcl 11508 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(log‘(exp‘𝐴))
∈ ℂ) → (𝐴
− (log‘(exp‘𝐴))) ∈ ℂ) | 
| 12 | 3, 11 | mpdan 687 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 −
(log‘(exp‘𝐴)))
∈ ℂ) | 
| 13 |  | efeq1 26571 | . . . . . . 7
⊢ ((𝐴 −
(log‘(exp‘𝐴)))
∈ ℂ → ((exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1 ↔ ((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π))) ∈ ℤ)) | 
| 14 | 12, 13 | syl 17 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
((exp‘(𝐴 −
(log‘(exp‘𝐴))))
= 1 ↔ ((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π))) ∈ ℤ)) | 
| 15 | 10, 14 | mpbid 232 | . . . . 5
⊢ (𝐴 ∈ ℂ → ((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π))) ∈ ℤ) | 
| 16 |  | ax-icn 11215 | . . . . . . . . . 10
⊢ i ∈
ℂ | 
| 17 |  | 2cn 12342 | . . . . . . . . . . 11
⊢ 2 ∈
ℂ | 
| 18 |  | picn 26502 | . . . . . . . . . . 11
⊢ π
∈ ℂ | 
| 19 | 17, 18 | mulcli 11269 | . . . . . . . . . 10
⊢ (2
· π) ∈ ℂ | 
| 20 | 16, 19 | mulcli 11269 | . . . . . . . . 9
⊢ (i
· (2 · π)) ∈ ℂ | 
| 21 | 20 | a1i 11 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· (2 · π)) ∈ ℂ) | 
| 22 |  | ine0 11699 | . . . . . . . . . 10
⊢ i ≠
0 | 
| 23 |  | 2ne0 12371 | . . . . . . . . . . 11
⊢ 2 ≠
0 | 
| 24 |  | pire 26501 | . . . . . . . . . . . 12
⊢ π
∈ ℝ | 
| 25 |  | pipos 26503 | . . . . . . . . . . . 12
⊢ 0 <
π | 
| 26 | 24, 25 | gt0ne0ii 11800 | . . . . . . . . . . 11
⊢ π ≠
0 | 
| 27 | 17, 18, 23, 26 | mulne0i 11907 | . . . . . . . . . 10
⊢ (2
· π) ≠ 0 | 
| 28 | 16, 19, 22, 27 | mulne0i 11907 | . . . . . . . . 9
⊢ (i
· (2 · π)) ≠ 0 | 
| 29 | 28 | a1i 11 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· (2 · π)) ≠ 0) | 
| 30 | 12, 21, 29 | divcan2d 12046 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → ((i
· (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 ·
π)))) = (𝐴 −
(log‘(exp‘𝐴)))) | 
| 31 | 30 | oveq2d 7448 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
((log‘(exp‘𝐴))
+ ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 ·
π))))) = ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴))))) | 
| 32 |  | pncan3 11517 | . . . . . . 7
⊢
(((log‘(exp‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℂ) →
((log‘(exp‘𝐴))
+ (𝐴 −
(log‘(exp‘𝐴))))
= 𝐴) | 
| 33 | 3, 32 | mpancom 688 | . . . . . 6
⊢ (𝐴 ∈ ℂ →
((log‘(exp‘𝐴))
+ (𝐴 −
(log‘(exp‘𝐴))))
= 𝐴) | 
| 34 | 31, 33 | eqtr2d 2777 | . . . . 5
⊢ (𝐴 ∈ ℂ → 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 ·
π)) · ((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π)))))) | 
| 35 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 ·
π))) → ((i · (2 · π)) · 𝑛) = ((i · (2 · π)) ·
((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π))))) | 
| 36 | 35 | oveq2d 7448 | . . . . . 6
⊢ (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 ·
π))) → ((log‘(exp‘𝐴)) + ((i · (2 · π))
· 𝑛)) =
((log‘(exp‘𝐴))
+ ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 ·
π)))))) | 
| 37 | 36 | rspceeqv 3644 | . . . . 5
⊢ ((((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π))) ∈ ℤ ∧ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π))
· ((𝐴 −
(log‘(exp‘𝐴)))
/ (i · (2 · π)))))) → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π))
· 𝑛))) | 
| 38 | 15, 34, 37 | syl2anc 584 | . . . 4
⊢ (𝐴 ∈ ℂ →
∃𝑛 ∈ ℤ
𝐴 =
((log‘(exp‘𝐴))
+ ((i · (2 · π)) · 𝑛))) | 
| 39 | 38 | 3ad2ant1 1133 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 ·
π)) · 𝑛))) | 
| 40 |  | fveq2 6905 | . . . . . 6
⊢
((exp‘𝐴) =
𝐵 →
(log‘(exp‘𝐴)) =
(log‘𝐵)) | 
| 41 | 40 | oveq1d 7447 | . . . . 5
⊢
((exp‘𝐴) =
𝐵 →
((log‘(exp‘𝐴))
+ ((i · (2 · π)) · 𝑛)) = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛))) | 
| 42 | 41 | eqeq2d 2747 | . . . 4
⊢
((exp‘𝐴) =
𝐵 → (𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π))
· 𝑛)) ↔ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛)))) | 
| 43 | 42 | rexbidv 3178 | . . 3
⊢
((exp‘𝐴) =
𝐵 → (∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 ·
π)) · 𝑛)) ↔
∃𝑛 ∈ ℤ
𝐴 = ((log‘𝐵) + ((i · (2 ·
π)) · 𝑛)))) | 
| 44 | 39, 43 | syl5ibcom 245 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) →
((exp‘𝐴) = 𝐵 → ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛)))) | 
| 45 |  | logcl 26611 | . . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈
ℂ) | 
| 46 | 45 | 3adant1 1130 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈
ℂ) | 
| 47 |  | zcn 12620 | . . . . . . . 8
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) | 
| 48 | 47 | adantl 481 | . . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈
ℂ) | 
| 49 |  | mulcl 11240 | . . . . . . 7
⊢ (((i
· (2 · π)) ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((i · (2
· π)) · 𝑛)
∈ ℂ) | 
| 50 | 20, 48, 49 | sylancr 587 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((i
· (2 · π)) · 𝑛) ∈ ℂ) | 
| 51 |  | efadd 16131 | . . . . . 6
⊢
(((log‘𝐵)
∈ ℂ ∧ ((i · (2 · π)) · 𝑛) ∈ ℂ) →
(exp‘((log‘𝐵) +
((i · (2 · π)) · 𝑛))) = ((exp‘(log‘𝐵)) · (exp‘((i
· (2 · π)) · 𝑛)))) | 
| 52 | 46, 50, 51 | syl2an2r 685 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) →
(exp‘((log‘𝐵) +
((i · (2 · π)) · 𝑛))) = ((exp‘(log‘𝐵)) · (exp‘((i
· (2 · π)) · 𝑛)))) | 
| 53 |  | eflog 26619 | . . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) →
(exp‘(log‘𝐵)) =
𝐵) | 
| 54 | 53 | 3adant1 1130 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) →
(exp‘(log‘𝐵)) =
𝐵) | 
| 55 |  | ef2kpi 26521 | . . . . . 6
⊢ (𝑛 ∈ ℤ →
(exp‘((i · (2 · π)) · 𝑛)) = 1) | 
| 56 | 54, 55 | oveqan12d 7451 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) →
((exp‘(log‘𝐵))
· (exp‘((i · (2 · π)) · 𝑛))) = (𝐵 · 1)) | 
| 57 |  | simpl2 1192 | . . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝐵 ∈
ℂ) | 
| 58 | 57 | mulridd 11279 | . . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝐵 · 1) = 𝐵) | 
| 59 | 52, 56, 58 | 3eqtrd 2780 | . . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) →
(exp‘((log‘𝐵) +
((i · (2 · π)) · 𝑛))) = 𝐵) | 
| 60 |  | fveqeq2 6914 | . . . 4
⊢ (𝐴 = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛)) →
((exp‘𝐴) = 𝐵 ↔
(exp‘((log‘𝐵) +
((i · (2 · π)) · 𝑛))) = 𝐵)) | 
| 61 | 59, 60 | syl5ibrcom 247 | . . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝐴 = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛)) → (exp‘𝐴) = 𝐵)) | 
| 62 | 61 | rexlimdva 3154 | . 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛)) → (exp‘𝐴) = 𝐵)) | 
| 63 | 44, 62 | impbid 212 | 1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) →
((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) ·
𝑛)))) |