MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflogeq Structured version   Visualization version   GIF version

Theorem eflogeq 26568
Description: Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
eflogeq ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛

Proof of Theorem eflogeq
StepHypRef Expression
1 efcl 16103 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2 efne0 16119 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0)
31, 2logcld 26536 . . . . . . . 8 (𝐴 ∈ ℂ → (log‘(exp‘𝐴)) ∈ ℂ)
4 efsub 16123 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (log‘(exp‘𝐴)) ∈ ℂ) → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘(log‘(exp‘𝐴)))))
53, 4mpdan 687 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘(log‘(exp‘𝐴)))))
6 eflog 26542 . . . . . . . . 9 (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐴) ≠ 0) → (exp‘(log‘(exp‘𝐴))) = (exp‘𝐴))
71, 2, 6syl2anc 584 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(log‘(exp‘𝐴))) = (exp‘𝐴))
87oveq2d 7426 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘𝐴) / (exp‘(log‘(exp‘𝐴)))) = ((exp‘𝐴) / (exp‘𝐴)))
91, 2dividd 12020 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘𝐴) / (exp‘𝐴)) = 1)
105, 8, 93eqtrd 2775 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1)
11 subcl 11486 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (log‘(exp‘𝐴)) ∈ ℂ) → (𝐴 − (log‘(exp‘𝐴))) ∈ ℂ)
123, 11mpdan 687 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − (log‘(exp‘𝐴))) ∈ ℂ)
13 efeq1 26494 . . . . . . 7 ((𝐴 − (log‘(exp‘𝐴))) ∈ ℂ → ((exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1 ↔ ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ))
1412, 13syl 17 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘(𝐴 − (log‘(exp‘𝐴)))) = 1 ↔ ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ))
1510, 14mpbid 232 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ)
16 ax-icn 11193 . . . . . . . . . 10 i ∈ ℂ
17 2cn 12320 . . . . . . . . . . 11 2 ∈ ℂ
18 picn 26424 . . . . . . . . . . 11 π ∈ ℂ
1917, 18mulcli 11247 . . . . . . . . . 10 (2 · π) ∈ ℂ
2016, 19mulcli 11247 . . . . . . . . 9 (i · (2 · π)) ∈ ℂ
2120a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → (i · (2 · π)) ∈ ℂ)
22 ine0 11677 . . . . . . . . . 10 i ≠ 0
23 2ne0 12349 . . . . . . . . . . 11 2 ≠ 0
24 pire 26423 . . . . . . . . . . . 12 π ∈ ℝ
25 pipos 26425 . . . . . . . . . . . 12 0 < π
2624, 25gt0ne0ii 11778 . . . . . . . . . . 11 π ≠ 0
2717, 18, 23, 26mulne0i 11885 . . . . . . . . . 10 (2 · π) ≠ 0
2816, 19, 22, 27mulne0i 11885 . . . . . . . . 9 (i · (2 · π)) ≠ 0
2928a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → (i · (2 · π)) ≠ 0)
3012, 21, 29divcan2d 12024 . . . . . . 7 (𝐴 ∈ ℂ → ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))) = (𝐴 − (log‘(exp‘𝐴))))
3130oveq2d 7426 . . . . . 6 (𝐴 ∈ ℂ → ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))))) = ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴)))))
32 pncan3 11495 . . . . . . 7 (((log‘(exp‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴)))) = 𝐴)
333, 32mpancom 688 . . . . . 6 (𝐴 ∈ ℂ → ((log‘(exp‘𝐴)) + (𝐴 − (log‘(exp‘𝐴)))) = 𝐴)
3431, 33eqtr2d 2772 . . . . 5 (𝐴 ∈ ℂ → 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))))))
35 oveq2 7418 . . . . . . 7 (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) → ((i · (2 · π)) · 𝑛) = ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))))
3635oveq2d 7426 . . . . . 6 (𝑛 = ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) → ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))))))
3736rspceeqv 3629 . . . . 5 ((((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π))) ∈ ℤ ∧ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · ((𝐴 − (log‘(exp‘𝐴))) / (i · (2 · π)))))) → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)))
3815, 34, 37syl2anc 584 . . . 4 (𝐴 ∈ ℂ → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)))
39383ad2ant1 1133 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)))
40 fveq2 6881 . . . . . 6 ((exp‘𝐴) = 𝐵 → (log‘(exp‘𝐴)) = (log‘𝐵))
4140oveq1d 7425 . . . . 5 ((exp‘𝐴) = 𝐵 → ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)))
4241eqeq2d 2747 . . . 4 ((exp‘𝐴) = 𝐵 → (𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) ↔ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
4342rexbidv 3165 . . 3 ((exp‘𝐴) = 𝐵 → (∃𝑛 ∈ ℤ 𝐴 = ((log‘(exp‘𝐴)) + ((i · (2 · π)) · 𝑛)) ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
4439, 43syl5ibcom 245 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 → ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
45 logcl 26534 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
46453adant1 1130 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (log‘𝐵) ∈ ℂ)
47 zcn 12598 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
4847adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
49 mulcl 11218 . . . . . . 7 (((i · (2 · π)) ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((i · (2 · π)) · 𝑛) ∈ ℂ)
5020, 48, 49sylancr 587 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((i · (2 · π)) · 𝑛) ∈ ℂ)
51 efadd 16115 . . . . . 6 (((log‘𝐵) ∈ ℂ ∧ ((i · (2 · π)) · 𝑛) ∈ ℂ) → (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = ((exp‘(log‘𝐵)) · (exp‘((i · (2 · π)) · 𝑛))))
5246, 50, 51syl2an2r 685 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = ((exp‘(log‘𝐵)) · (exp‘((i · (2 · π)) · 𝑛))))
53 eflog 26542 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
54533adant1 1130 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
55 ef2kpi 26444 . . . . . 6 (𝑛 ∈ ℤ → (exp‘((i · (2 · π)) · 𝑛)) = 1)
5654, 55oveqan12d 7429 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → ((exp‘(log‘𝐵)) · (exp‘((i · (2 · π)) · 𝑛))) = (𝐵 · 1))
57 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → 𝐵 ∈ ℂ)
5857mulridd 11257 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝐵 · 1) = 𝐵)
5952, 56, 583eqtrd 2775 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = 𝐵)
60 fveqeq2 6890 . . . 4 (𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → ((exp‘𝐴) = 𝐵 ↔ (exp‘((log‘𝐵) + ((i · (2 · π)) · 𝑛))) = 𝐵))
6159, 60syl5ibrcom 247 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝑛 ∈ ℤ) → (𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → (exp‘𝐴) = 𝐵))
6261rexlimdva 3142 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛)) → (exp‘𝐴) = 𝐵))
6344, 62impbid 212 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((exp‘𝐴) = 𝐵 ↔ ∃𝑛 ∈ ℤ 𝐴 = ((log‘𝐵) + ((i · (2 · π)) · 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  cmin 11471   / cdiv 11899  2c2 12300  cz 12593  expce 16082  πcpi 16087  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  cxpeq  26724
  Copyright terms: Public domain W3C validator