Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coseq0 | Structured version Visualization version GIF version |
Description: A complex number whose cosine is zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
coseq0 | ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 0 ↔ ((𝐴 / π) + (1 / 2)) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | picn 25721 | . . . . . 6 ⊢ π ∈ ℂ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → π ∈ ℂ) |
3 | 2 | halfcld 12323 | . . . 4 ⊢ (𝐴 ∈ ℂ → (π / 2) ∈ ℂ) |
4 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
5 | 3, 4 | addcld 11099 | . . 3 ⊢ (𝐴 ∈ ℂ → ((π / 2) + 𝐴) ∈ ℂ) |
6 | sineq0 25785 | . . 3 ⊢ (((π / 2) + 𝐴) ∈ ℂ → ((sin‘((π / 2) + 𝐴)) = 0 ↔ (((π / 2) + 𝐴) / π) ∈ ℤ)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → ((sin‘((π / 2) + 𝐴)) = 0 ↔ (((π / 2) + 𝐴) / π) ∈ ℤ)) |
8 | sinhalfpip 25754 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) + 𝐴)) = (cos‘𝐴)) | |
9 | 8 | eqeq1d 2739 | . 2 ⊢ (𝐴 ∈ ℂ → ((sin‘((π / 2) + 𝐴)) = 0 ↔ (cos‘𝐴) = 0)) |
10 | pire 25720 | . . . . . . 7 ⊢ π ∈ ℝ | |
11 | pipos 25722 | . . . . . . 7 ⊢ 0 < π | |
12 | 10, 11 | gt0ne0ii 11616 | . . . . . 6 ⊢ π ≠ 0 |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → π ≠ 0) |
14 | 3, 4, 2, 13 | divdird 11894 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((π / 2) + 𝐴) / π) = (((π / 2) / π) + (𝐴 / π))) |
15 | 2cnd 12156 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
16 | 2ne0 12182 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
17 | 16 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
18 | 2, 15, 2, 17, 13 | divdiv32d 11881 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((π / 2) / π) = ((π / π) / 2)) |
19 | 2, 13 | dividd 11854 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (π / π) = 1) |
20 | 19 | oveq1d 7356 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((π / π) / 2) = (1 / 2)) |
21 | 18, 20 | eqtrd 2777 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((π / 2) / π) = (1 / 2)) |
22 | 21 | oveq1d 7356 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((π / 2) / π) + (𝐴 / π)) = ((1 / 2) + (𝐴 / π))) |
23 | 1cnd 11075 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
24 | 23 | halfcld 12323 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (1 / 2) ∈ ℂ) |
25 | 4, 2, 13 | divcld 11856 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 / π) ∈ ℂ) |
26 | 24, 25 | addcomd 11282 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((1 / 2) + (𝐴 / π)) = ((𝐴 / π) + (1 / 2))) |
27 | 14, 22, 26 | 3eqtrd 2781 | . . 3 ⊢ (𝐴 ∈ ℂ → (((π / 2) + 𝐴) / π) = ((𝐴 / π) + (1 / 2))) |
28 | 27 | eleq1d 2822 | . 2 ⊢ (𝐴 ∈ ℂ → ((((π / 2) + 𝐴) / π) ∈ ℤ ↔ ((𝐴 / π) + (1 / 2)) ∈ ℤ)) |
29 | 7, 9, 28 | 3bitr3d 309 | 1 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 0 ↔ ((𝐴 / π) + (1 / 2)) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ‘cfv 6483 (class class class)co 7341 ℂcc 10974 0cc0 10976 1c1 10977 + caddc 10979 / cdiv 11737 2c2 12133 ℤcz 12424 sincsin 15872 cosccos 15873 πcpi 15875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-pm 8693 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-fl 13617 df-mod 13695 df-seq 13827 df-exp 13888 df-fac 14093 df-bc 14122 df-hash 14150 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 df-sin 15878 df-cos 15879 df-pi 15881 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-fbas 20699 df-fg 20700 df-cnfld 20703 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cld 22275 df-ntr 22276 df-cls 22277 df-nei 22354 df-lp 22392 df-perf 22393 df-cn 22483 df-cnp 22484 df-haus 22571 df-tx 22818 df-hmeo 23011 df-fil 23102 df-fm 23194 df-flim 23195 df-flf 23196 df-xms 23578 df-ms 23579 df-tms 23580 df-cncf 24146 df-limc 25135 df-dv 25136 |
This theorem is referenced by: dirkercncflem1 44032 dirkercncflem2 44033 |
Copyright terms: Public domain | W3C validator |