![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icccmpALT | Structured version Visualization version GIF version |
Description: A closed interval in ℝ is compact. Alternate proof of icccmp 24872 using the Heine-Borel theorem heibor 37822. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Aug-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
icccmpALT.1 | ⊢ 𝐽 = (𝐴[,]𝐵) |
icccmpALT.2 | ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) |
icccmpALT.3 | ⊢ 𝑇 = (MetOpen‘𝑀) |
Ref | Expression |
---|---|
icccmpALT | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icccmpALT.1 | . . 3 ⊢ 𝐽 = (𝐴[,]𝐵) | |
2 | icccld 24812 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,)))) | |
3 | 1, 2 | eqeltrid 2845 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ∈ (Clsd‘(topGen‘ran (,)))) |
4 | icccmpALT.2 | . . 3 ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) | |
5 | 1, 4 | iccbnd 37841 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽)) |
6 | iccssre 13475 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
7 | 1, 6 | eqsstrid 4047 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ) |
8 | icccmpALT.3 | . . . 4 ⊢ 𝑇 = (MetOpen‘𝑀) | |
9 | eqid 2737 | . . . 4 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
10 | 4, 8, 9 | reheibor 37840 | . . 3 ⊢ (𝐽 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝐽 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑀 ∈ (Bnd‘𝐽)))) |
11 | 7, 10 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑇 ∈ Comp ↔ (𝐽 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑀 ∈ (Bnd‘𝐽)))) |
12 | 3, 5, 11 | mpbir2and 713 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 × cxp 5691 ran crn 5694 ↾ cres 5695 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 ℝcr 11161 − cmin 11499 (,)cioo 13393 [,]cicc 13396 abscabs 15279 topGenctg 17493 MetOpencmopn 21381 Clsdccld 23049 Compccmp 23419 Bndcbnd 37768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cc 10482 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-omul 8519 df-er 8753 df-ec 8755 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-card 9986 df-acn 9989 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ioo 13397 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-fl 13838 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15729 df-gz 16973 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-rest 17478 df-topn 17479 df-topgen 17499 df-prds 17503 df-pws 17505 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-fbas 21388 df-fg 21389 df-cnfld 21392 df-top 22925 df-topon 22942 df-topsp 22964 df-bases 22978 df-cld 23052 df-ntr 23053 df-cls 23054 df-nei 23131 df-cn 23260 df-lm 23262 df-haus 23348 df-cmp 23420 df-hmeo 23788 df-hmph 23789 df-fil 23879 df-fm 23971 df-flim 23972 df-flf 23973 df-xms 24355 df-ms 24356 df-cfil 25314 df-cau 25315 df-cmet 25316 df-totbnd 37769 df-bnd 37780 df-ismty 37800 df-rrn 37827 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |