Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icccmpALT Structured version   Visualization version   GIF version

Theorem icccmpALT 37842
Description: A closed interval in is compact. Alternate proof of icccmp 24872 using the Heine-Borel theorem heibor 37822. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Aug-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
icccmpALT.1 𝐽 = (𝐴[,]𝐵)
icccmpALT.2 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
icccmpALT.3 𝑇 = (MetOpen‘𝑀)
Assertion
Ref Expression
icccmpALT ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)

Proof of Theorem icccmpALT
StepHypRef Expression
1 icccmpALT.1 . . 3 𝐽 = (𝐴[,]𝐵)
2 icccld 24812 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
31, 2eqeltrid 2845 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ∈ (Clsd‘(topGen‘ran (,))))
4 icccmpALT.2 . . 3 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
51, 4iccbnd 37841 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
6 iccssre 13475 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
71, 6eqsstrid 4047 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ)
8 icccmpALT.3 . . . 4 𝑇 = (MetOpen‘𝑀)
9 eqid 2737 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
104, 8, 9reheibor 37840 . . 3 (𝐽 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝐽 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑀 ∈ (Bnd‘𝐽))))
117, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑇 ∈ Comp ↔ (𝐽 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑀 ∈ (Bnd‘𝐽))))
123, 5, 11mpbir2and 713 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wss 3966   × cxp 5691  ran crn 5694  cres 5695  ccom 5697  cfv 6569  (class class class)co 7438  cr 11161  cmin 11499  (,)cioo 13393  [,]cicc 13396  abscabs 15279  topGenctg 17493  MetOpencmopn 21381  Clsdccld 23049  Compccmp 23419  Bndcbnd 37768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-cc 10482  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-2o 8515  df-oadd 8518  df-omul 8519  df-er 8753  df-ec 8755  df-map 8876  df-pm 8877  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fi 9458  df-sup 9489  df-inf 9490  df-oi 9557  df-card 9986  df-acn 9989  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-ioo 13397  df-ico 13399  df-icc 13400  df-fz 13554  df-fzo 13701  df-fl 13838  df-seq 14049  df-exp 14109  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513  df-clim 15530  df-rlim 15531  df-sum 15729  df-gz 16973  df-struct 17190  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-ress 17284  df-plusg 17320  df-mulr 17321  df-starv 17322  df-sca 17323  df-vsca 17324  df-ip 17325  df-tset 17326  df-ple 17327  df-ds 17329  df-unif 17330  df-hom 17331  df-cco 17332  df-rest 17478  df-topn 17479  df-topgen 17499  df-prds 17503  df-pws 17505  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-fbas 21388  df-fg 21389  df-cnfld 21392  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-cld 23052  df-ntr 23053  df-cls 23054  df-nei 23131  df-cn 23260  df-lm 23262  df-haus 23348  df-cmp 23420  df-hmeo 23788  df-hmph 23789  df-fil 23879  df-fm 23971  df-flim 23972  df-flf 23973  df-xms 24355  df-ms 24356  df-cfil 25314  df-cau 25315  df-cmet 25316  df-totbnd 37769  df-bnd 37780  df-ismty 37800  df-rrn 37827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator