![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subccat | Structured version Visualization version GIF version |
Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subccat.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
subccat.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
Ref | Expression |
---|---|
subccat | ⊢ (𝜑 → 𝐷 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subccat.1 | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
2 | subccat.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | eqidd 2779 | . . . 4 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
4 | 2, 3 | subcfn 16890 | . . 3 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
5 | eqid 2778 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
6 | 1, 2, 4, 5 | subccatid 16895 | . 2 ⊢ (𝜑 → (𝐷 ∈ Cat ∧ (Id‘𝐷) = (𝑥 ∈ dom dom 𝐽 ↦ ((Id‘𝐶)‘𝑥)))) |
7 | 6 | simpld 490 | 1 ⊢ (𝜑 → 𝐷 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ↦ cmpt 4967 dom cdm 5357 ‘cfv 6137 (class class class)co 6924 Catccat 16714 Idccid 16715 ↾cat cresc 16857 Subcatcsubc 16858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-4 11444 df-5 11445 df-6 11446 df-7 11447 df-8 11448 df-9 11449 df-n0 11647 df-z 11733 df-dec 11850 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-hom 16366 df-cco 16367 df-cat 16718 df-cid 16719 df-homf 16720 df-ssc 16859 df-resc 16860 df-subc 16861 |
This theorem is referenced by: issubc3 16898 resscat 16901 subsubc 16902 funcres 16945 funcres2b 16946 rescfth 16986 funcsetcres2 17132 idfusubc0 42890 rngccat 43003 ringccat 43049 sringcat 43102 cringcat 43104 rhmsubccat 43116 sringcatALTV 43120 cringcatALTV 43122 rhmsubcALTVcat 43134 |
Copyright terms: Public domain | W3C validator |