Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volioof Structured version   Visualization version   GIF version

Theorem volioof 45992
Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volioof (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)

Proof of Theorem volioof
StepHypRef Expression
1 volf 25437 . 2 vol:dom vol⟶(0[,]+∞)
2 ioof 13415 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6691 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . 4 (,) Fn (ℝ* × ℝ*)
5 df-ov 7393 . . . . . . . 8 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
65a1i 11 . . . . . . 7 (𝑥 ∈ (ℝ* × ℝ*) → ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
7 1st2nd2 8010 . . . . . . . . 9 (𝑥 ∈ (ℝ* × ℝ*) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
87eqcomd 2736 . . . . . . . 8 (𝑥 ∈ (ℝ* × ℝ*) → ⟨(1st𝑥), (2nd𝑥)⟩ = 𝑥)
98fveq2d 6865 . . . . . . 7 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((,)‘𝑥))
106, 9eqtr2d 2766 . . . . . 6 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
11 ioombl 25473 . . . . . 6 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
1210, 11eqeltrdi 2837 . . . . 5 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) ∈ dom vol)
1312rgen 3047 . . . 4 𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol
144, 13pm3.2i 470 . . 3 ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol)
15 ffnfv 7094 . . 3 ((,):(ℝ* × ℝ*)⟶dom vol ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol))
1614, 15mpbir 231 . 2 (,):(ℝ* × ℝ*)⟶dom vol
17 fco 6715 . 2 ((vol:dom vol⟶(0[,]+∞) ∧ (,):(ℝ* × ℝ*)⟶dom vol) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
181, 16, 17mp2an 692 1 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3045  𝒫 cpw 4566  cop 4598   × cxp 5639  dom cdm 5641  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214  (,)cioo 13313  [,]cicc 13316  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373
This theorem is referenced by:  volioofmpt  45999  voliooicof  46001  ovolval3  46652  ovolval5lem2  46658
  Copyright terms: Public domain W3C validator