Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volioof Structured version   Visualization version   GIF version

Theorem volioof 43418
Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volioof (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)

Proof of Theorem volioof
StepHypRef Expression
1 volf 24598 . 2 vol:dom vol⟶(0[,]+∞)
2 ioof 13108 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6584 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . 4 (,) Fn (ℝ* × ℝ*)
5 df-ov 7258 . . . . . . . 8 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
65a1i 11 . . . . . . 7 (𝑥 ∈ (ℝ* × ℝ*) → ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
7 1st2nd2 7843 . . . . . . . . 9 (𝑥 ∈ (ℝ* × ℝ*) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
87eqcomd 2744 . . . . . . . 8 (𝑥 ∈ (ℝ* × ℝ*) → ⟨(1st𝑥), (2nd𝑥)⟩ = 𝑥)
98fveq2d 6760 . . . . . . 7 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((,)‘𝑥))
106, 9eqtr2d 2779 . . . . . 6 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
11 ioombl 24634 . . . . . 6 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
1210, 11eqeltrdi 2847 . . . . 5 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) ∈ dom vol)
1312rgen 3073 . . . 4 𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol
144, 13pm3.2i 470 . . 3 ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol)
15 ffnfv 6974 . . 3 ((,):(ℝ* × ℝ*)⟶dom vol ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol))
1614, 15mpbir 230 . 2 (,):(ℝ* × ℝ*)⟶dom vol
17 fco 6608 . 2 ((vol:dom vol⟶(0[,]+∞) ∧ (,):(ℝ* × ℝ*)⟶dom vol) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
181, 16, 17mp2an 688 1 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wral 3063  𝒫 cpw 4530  cop 4564   × cxp 5578  dom cdm 5580  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939  (,)cioo 13008  [,]cicc 13011  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534
This theorem is referenced by:  volioofmpt  43425  voliooicof  43427  ovolval3  44075  ovolval5lem2  44081
  Copyright terms: Public domain W3C validator