Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volioof Structured version   Visualization version   GIF version

Theorem volioof 44690
Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
volioof (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)

Proof of Theorem volioof
StepHypRef Expression
1 volf 25038 . 2 vol:dom vol⟶(0[,]+∞)
2 ioof 13421 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6715 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . 4 (,) Fn (ℝ* × ℝ*)
5 df-ov 7409 . . . . . . . 8 ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩)
65a1i 11 . . . . . . 7 (𝑥 ∈ (ℝ* × ℝ*) → ((1st𝑥)(,)(2nd𝑥)) = ((,)‘⟨(1st𝑥), (2nd𝑥)⟩))
7 1st2nd2 8011 . . . . . . . . 9 (𝑥 ∈ (ℝ* × ℝ*) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
87eqcomd 2739 . . . . . . . 8 (𝑥 ∈ (ℝ* × ℝ*) → ⟨(1st𝑥), (2nd𝑥)⟩ = 𝑥)
98fveq2d 6893 . . . . . . 7 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘⟨(1st𝑥), (2nd𝑥)⟩) = ((,)‘𝑥))
106, 9eqtr2d 2774 . . . . . 6 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) = ((1st𝑥)(,)(2nd𝑥)))
11 ioombl 25074 . . . . . 6 ((1st𝑥)(,)(2nd𝑥)) ∈ dom vol
1210, 11eqeltrdi 2842 . . . . 5 (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) ∈ dom vol)
1312rgen 3064 . . . 4 𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol
144, 13pm3.2i 472 . . 3 ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol)
15 ffnfv 7115 . . 3 ((,):(ℝ* × ℝ*)⟶dom vol ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol))
1614, 15mpbir 230 . 2 (,):(ℝ* × ℝ*)⟶dom vol
17 fco 6739 . 2 ((vol:dom vol⟶(0[,]+∞) ∧ (,):(ℝ* × ℝ*)⟶dom vol) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
181, 16, 17mp2an 691 1 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wral 3062  𝒫 cpw 4602  cop 4634   × cxp 5674  dom cdm 5676  ccom 5680   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  1st c1st 7970  2nd c2nd 7971  cr 11106  0cc0 11107  +∞cpnf 11242  *cxr 11244  (,)cioo 13321  [,]cicc 13324  volcvol 24972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xadd 13090  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-xmet 20930  df-met 20931  df-ovol 24973  df-vol 24974
This theorem is referenced by:  volioofmpt  44697  voliooicof  44699  ovolval3  45350  ovolval5lem2  45356
  Copyright terms: Public domain W3C validator