![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > volioof | Structured version Visualization version GIF version |
Description: The function that assigns the Lebesgue measure to open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
volioof | ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volf 25409 | . 2 ⊢ vol:dom vol⟶(0[,]+∞) | |
2 | ioof 13427 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | ffn 6710 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (,) Fn (ℝ* × ℝ*) |
5 | df-ov 7407 | . . . . . . . 8 ⊢ ((1st ‘𝑥)(,)(2nd ‘𝑥)) = ((,)‘⟨(1st ‘𝑥), (2nd ‘𝑥)⟩) | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ* × ℝ*) → ((1st ‘𝑥)(,)(2nd ‘𝑥)) = ((,)‘⟨(1st ‘𝑥), (2nd ‘𝑥)⟩)) |
7 | 1st2nd2 8010 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℝ* × ℝ*) → 𝑥 = ⟨(1st ‘𝑥), (2nd ‘𝑥)⟩) | |
8 | 7 | eqcomd 2732 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ* × ℝ*) → ⟨(1st ‘𝑥), (2nd ‘𝑥)⟩ = 𝑥) |
9 | 8 | fveq2d 6888 | . . . . . . 7 ⊢ (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘⟨(1st ‘𝑥), (2nd ‘𝑥)⟩) = ((,)‘𝑥)) |
10 | 6, 9 | eqtr2d 2767 | . . . . . 6 ⊢ (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) = ((1st ‘𝑥)(,)(2nd ‘𝑥))) |
11 | ioombl 25445 | . . . . . 6 ⊢ ((1st ‘𝑥)(,)(2nd ‘𝑥)) ∈ dom vol | |
12 | 10, 11 | eqeltrdi 2835 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* × ℝ*) → ((,)‘𝑥) ∈ dom vol) |
13 | 12 | rgen 3057 | . . . 4 ⊢ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol |
14 | 4, 13 | pm3.2i 470 | . . 3 ⊢ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol) |
15 | ffnfv 7113 | . . 3 ⊢ ((,):(ℝ* × ℝ*)⟶dom vol ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ (ℝ* × ℝ*)((,)‘𝑥) ∈ dom vol)) | |
16 | 14, 15 | mpbir 230 | . 2 ⊢ (,):(ℝ* × ℝ*)⟶dom vol |
17 | fco 6734 | . 2 ⊢ ((vol:dom vol⟶(0[,]+∞) ∧ (,):(ℝ* × ℝ*)⟶dom vol) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)) | |
18 | 1, 16, 17 | mp2an 689 | 1 ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 𝒫 cpw 4597 ⟨cop 4629 × cxp 5667 dom cdm 5669 ∘ ccom 5673 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 ℝcr 11108 0cc0 11109 +∞cpnf 11246 ℝ*cxr 11248 (,)cioo 13327 [,]cicc 13330 volcvol 25343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xadd 13096 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-xmet 21229 df-met 21230 df-ovol 25344 df-vol 25345 |
This theorem is referenced by: volioofmpt 45263 voliooicof 45265 ovolval3 45916 ovolval5lem2 45922 |
Copyright terms: Public domain | W3C validator |