Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual0 | Structured version Visualization version GIF version |
Description: The zero scalar of the dual of a vector space. (Contributed by NM, 28-Dec-2014.) |
Ref | Expression |
---|---|
ldual0.r | β’ π = (Scalarβπ) |
ldual0.z | β’ 0 = (0gβπ ) |
ldual0.d | β’ π· = (LDualβπ) |
ldual0.s | β’ π = (Scalarβπ·) |
ldual0.o | β’ π = (0gβπ) |
ldual0.w | β’ (π β π β LMod) |
Ref | Expression |
---|---|
ldual0 | β’ (π β π = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldual0.r | . . . 4 β’ π = (Scalarβπ) | |
2 | eqid 2736 | . . . 4 β’ (opprβπ ) = (opprβπ ) | |
3 | ldual0.d | . . . 4 β’ π· = (LDualβπ) | |
4 | ldual0.s | . . . 4 β’ π = (Scalarβπ·) | |
5 | ldual0.w | . . . 4 β’ (π β π β LMod) | |
6 | 1, 2, 3, 4, 5 | ldualsca 37407 | . . 3 β’ (π β π = (opprβπ )) |
7 | 6 | fveq2d 6829 | . 2 β’ (π β (0gβπ) = (0gβ(opprβπ ))) |
8 | ldual0.o | . 2 β’ π = (0gβπ) | |
9 | ldual0.z | . . 3 β’ 0 = (0gβπ ) | |
10 | 2, 9 | oppr0 19970 | . 2 β’ 0 = (0gβ(opprβπ )) |
11 | 7, 8, 10 | 3eqtr4g 2801 | 1 β’ (π β π = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6479 Scalarcsca 17062 0gc0g 17247 opprcoppr 19956 LModclmod 20229 LDualcld 37398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-0g 17249 df-oppr 19957 df-ldual 37399 |
This theorem is referenced by: ldual0vs 37435 lkreqN 37445 lkrlspeqN 37446 lclkrlem1 39782 |
Copyright terms: Public domain | W3C validator |