Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflt Structured version   Visualization version   GIF version

Theorem liminflt 42964
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflt.k 𝑘𝐹
liminflt.m (𝜑𝑀 ∈ ℤ)
liminflt.z 𝑍 = (ℤ𝑀)
liminflt.f (𝜑𝐹:𝑍⟶ℝ)
liminflt.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminflt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem liminflt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 liminflt.z . . 3 𝑍 = (ℤ𝑀)
3 liminflt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 liminflt.r . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
5 liminflt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5liminfltlem 42963 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋))
7 fveq2 6695 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3315 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)))
9 nfcv 2897 . . . . . . . 8 𝑘lim inf
10 liminflt.k . . . . . . . 8 𝑘𝐹
119, 10nffv 6705 . . . . . . 7 𝑘(lim inf‘𝐹)
12 nfcv 2897 . . . . . . 7 𝑘 <
13 nfcv 2897 . . . . . . . . 9 𝑘𝑙
1410, 13nffv 6705 . . . . . . . 8 𝑘(𝐹𝑙)
15 nfcv 2897 . . . . . . . 8 𝑘 +
16 nfcv 2897 . . . . . . . 8 𝑘𝑋
1714, 15, 16nfov 7221 . . . . . . 7 𝑘((𝐹𝑙) + 𝑋)
1811, 12, 17nfbr 5086 . . . . . 6 𝑘(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)
19 nfv 1922 . . . . . 6 𝑙(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)
20 fveq2 6695 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2120oveq1d 7206 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) + 𝑋) = ((𝐹𝑘) + 𝑋))
2221breq2d 5051 . . . . . 6 (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2318, 19, 22cbvralw 3339 . . . . 5 (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
2423a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
258, 24bitrd 282 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2625cbvrexvw 3349 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
276, 26sylib 221 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2112  wnfc 2877  wral 3051  wrex 3052   class class class wbr 5039  wf 6354  cfv 6358  (class class class)co 7191  cr 10693   + caddc 10697   < clt 10832  cz 12141  cuz 12403  +crp 12551  lim infclsi 42910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-ico 12906  df-fz 13061  df-fzo 13204  df-fl 13332  df-ceil 13333  df-limsup 14997  df-liminf 42911
This theorem is referenced by:  liminflimsupclim  42966
  Copyright terms: Public domain W3C validator