Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflt Structured version   Visualization version   GIF version

Theorem liminflt 45834
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflt.k 𝑘𝐹
liminflt.m (𝜑𝑀 ∈ ℤ)
liminflt.z 𝑍 = (ℤ𝑀)
liminflt.f (𝜑𝐹:𝑍⟶ℝ)
liminflt.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminflt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem liminflt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 liminflt.z . . 3 𝑍 = (ℤ𝑀)
3 liminflt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 liminflt.r . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
5 liminflt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5liminfltlem 45833 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋))
7 fveq2 6876 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3305 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)))
9 nfcv 2898 . . . . . . . 8 𝑘lim inf
10 liminflt.k . . . . . . . 8 𝑘𝐹
119, 10nffv 6886 . . . . . . 7 𝑘(lim inf‘𝐹)
12 nfcv 2898 . . . . . . 7 𝑘 <
13 nfcv 2898 . . . . . . . . 9 𝑘𝑙
1410, 13nffv 6886 . . . . . . . 8 𝑘(𝐹𝑙)
15 nfcv 2898 . . . . . . . 8 𝑘 +
16 nfcv 2898 . . . . . . . 8 𝑘𝑋
1714, 15, 16nfov 7435 . . . . . . 7 𝑘((𝐹𝑙) + 𝑋)
1811, 12, 17nfbr 5166 . . . . . 6 𝑘(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)
19 nfv 1914 . . . . . 6 𝑙(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)
20 fveq2 6876 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2120oveq1d 7420 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) + 𝑋) = ((𝐹𝑘) + 𝑋))
2221breq2d 5131 . . . . . 6 (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2318, 19, 22cbvralw 3286 . . . . 5 (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
2423a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
258, 24bitrd 279 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2625cbvrexvw 3221 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
276, 26sylib 218 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wnfc 2883  wral 3051  wrex 3060   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  cr 11128   + caddc 11132   < clt 11269  cz 12588  cuz 12852  +crp 13008  lim infclsi 45780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-ceil 13810  df-limsup 15487  df-liminf 45781
This theorem is referenced by:  liminflimsupclim  45836
  Copyright terms: Public domain W3C validator