![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminflt.k | ⊢ Ⅎ𝑘𝐹 |
liminflt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminflt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminflt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
liminflt.r | ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
liminflt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
liminflt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | liminflt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | liminflt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | liminflt.r | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) | |
5 | liminflt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
6 | 1, 2, 3, 4, 5 | liminfltlem 45759 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋)) |
7 | fveq2 6906 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
8 | 7 | raleqdv 3323 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋))) |
9 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑘lim inf | |
10 | liminflt.k | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
11 | 9, 10 | nffv 6916 | . . . . . . 7 ⊢ Ⅎ𝑘(lim inf‘𝐹) |
12 | nfcv 2902 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
13 | nfcv 2902 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
14 | 10, 13 | nffv 6916 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
15 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑘 + | |
16 | nfcv 2902 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
17 | 14, 15, 16 | nfov 7460 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) + 𝑋) |
18 | 11, 12, 17 | nfbr 5194 | . . . . . 6 ⊢ Ⅎ𝑘(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) |
19 | nfv 1911 | . . . . . 6 ⊢ Ⅎ𝑙(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋) | |
20 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
21 | 20 | oveq1d 7445 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) + 𝑋) = ((𝐹‘𝑘) + 𝑋)) |
22 | 21 | breq2d 5159 | . . . . . 6 ⊢ (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
23 | 18, 19, 22 | cbvralw 3303 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
25 | 8, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
26 | 25 | cbvrexvw 3235 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
27 | 6, 26 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 Ⅎwnfc 2887 ∀wral 3058 ∃wrex 3067 class class class wbr 5147 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 + caddc 11155 < clt 11292 ℤcz 12610 ℤ≥cuz 12875 ℝ+crp 13031 lim infclsi 45706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-ico 13389 df-fz 13544 df-fzo 13691 df-fl 13828 df-ceil 13829 df-limsup 15503 df-liminf 45707 |
This theorem is referenced by: liminflimsupclim 45762 |
Copyright terms: Public domain | W3C validator |