![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflt | Structured version Visualization version GIF version |
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminflt.k | ⊢ Ⅎ𝑘𝐹 |
liminflt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
liminflt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
liminflt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
liminflt.r | ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
liminflt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
Ref | Expression |
---|---|
liminflt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | liminflt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | liminflt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | liminflt.r | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) | |
5 | liminflt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
6 | 1, 2, 3, 4, 5 | liminfltlem 41551 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋)) |
7 | fveq2 6504 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
8 | 7 | raleqdv 3357 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋))) |
9 | nfcv 2934 | . . . . . . . 8 ⊢ Ⅎ𝑘lim inf | |
10 | liminflt.k | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
11 | 9, 10 | nffv 6514 | . . . . . . 7 ⊢ Ⅎ𝑘(lim inf‘𝐹) |
12 | nfcv 2934 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
13 | nfcv 2934 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
14 | 10, 13 | nffv 6514 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
15 | nfcv 2934 | . . . . . . . 8 ⊢ Ⅎ𝑘 + | |
16 | nfcv 2934 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
17 | 14, 15, 16 | nfov 7012 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) + 𝑋) |
18 | 11, 12, 17 | nfbr 4981 | . . . . . 6 ⊢ Ⅎ𝑘(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) |
19 | nfv 1874 | . . . . . 6 ⊢ Ⅎ𝑙(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋) | |
20 | fveq2 6504 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
21 | 20 | oveq1d 6997 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) + 𝑋) = ((𝐹‘𝑘) + 𝑋)) |
22 | 21 | breq2d 4946 | . . . . . 6 ⊢ (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
23 | 18, 19, 22 | cbvral 3381 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
25 | 8, 24 | bitrd 271 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
26 | 25 | cbvrexv 3386 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
27 | 6, 26 | sylib 210 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1508 ∈ wcel 2051 Ⅎwnfc 2918 ∀wral 3090 ∃wrex 3091 class class class wbr 4934 ⟶wf 6189 ‘cfv 6193 (class class class)co 6982 ℝcr 10340 + caddc 10344 < clt 10480 ℤcz 11799 ℤ≥cuz 12064 ℝ+crp 12210 lim infclsi 41498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-oadd 7915 df-er 8095 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-sup 8707 df-inf 8708 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-n0 11714 df-z 11800 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-ico 12566 df-fz 12715 df-fzo 12856 df-fl 12983 df-ceil 12984 df-limsup 14695 df-liminf 41499 |
This theorem is referenced by: liminflimsupclim 41554 |
Copyright terms: Public domain | W3C validator |