Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflt Structured version   Visualization version   GIF version

Theorem liminflt 42440
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflt.k 𝑘𝐹
liminflt.m (𝜑𝑀 ∈ ℤ)
liminflt.z 𝑍 = (ℤ𝑀)
liminflt.f (𝜑𝐹:𝑍⟶ℝ)
liminflt.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminflt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem liminflt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 liminflt.z . . 3 𝑍 = (ℤ𝑀)
3 liminflt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 liminflt.r . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
5 liminflt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5liminfltlem 42439 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋))
7 fveq2 6649 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3367 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)))
9 nfcv 2958 . . . . . . . 8 𝑘lim inf
10 liminflt.k . . . . . . . 8 𝑘𝐹
119, 10nffv 6659 . . . . . . 7 𝑘(lim inf‘𝐹)
12 nfcv 2958 . . . . . . 7 𝑘 <
13 nfcv 2958 . . . . . . . . 9 𝑘𝑙
1410, 13nffv 6659 . . . . . . . 8 𝑘(𝐹𝑙)
15 nfcv 2958 . . . . . . . 8 𝑘 +
16 nfcv 2958 . . . . . . . 8 𝑘𝑋
1714, 15, 16nfov 7169 . . . . . . 7 𝑘((𝐹𝑙) + 𝑋)
1811, 12, 17nfbr 5080 . . . . . 6 𝑘(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)
19 nfv 1915 . . . . . 6 𝑙(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)
20 fveq2 6649 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2120oveq1d 7154 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) + 𝑋) = ((𝐹𝑘) + 𝑋))
2221breq2d 5045 . . . . . 6 (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2318, 19, 22cbvralw 3390 . . . . 5 (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
2423a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
258, 24bitrd 282 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2625cbvrexvw 3400 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
276, 26sylib 221 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2112  wnfc 2939  wral 3109  wrex 3110   class class class wbr 5033  wf 6324  cfv 6328  (class class class)co 7139  cr 10529   + caddc 10533   < clt 10668  cz 11973  cuz 12235  +crp 12381  lim infclsi 42386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-ico 12736  df-fz 12890  df-fzo 13033  df-fl 13161  df-ceil 13162  df-limsup 14824  df-liminf 42387
This theorem is referenced by:  liminflimsupclim  42442
  Copyright terms: Public domain W3C validator