Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflt Structured version   Visualization version   GIF version

Theorem liminflt 45760
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflt.k 𝑘𝐹
liminflt.m (𝜑𝑀 ∈ ℤ)
liminflt.z 𝑍 = (ℤ𝑀)
liminflt.f (𝜑𝐹:𝑍⟶ℝ)
liminflt.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminflt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem liminflt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 liminflt.z . . 3 𝑍 = (ℤ𝑀)
3 liminflt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 liminflt.r . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
5 liminflt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5liminfltlem 45759 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋))
7 fveq2 6906 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3323 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)))
9 nfcv 2902 . . . . . . . 8 𝑘lim inf
10 liminflt.k . . . . . . . 8 𝑘𝐹
119, 10nffv 6916 . . . . . . 7 𝑘(lim inf‘𝐹)
12 nfcv 2902 . . . . . . 7 𝑘 <
13 nfcv 2902 . . . . . . . . 9 𝑘𝑙
1410, 13nffv 6916 . . . . . . . 8 𝑘(𝐹𝑙)
15 nfcv 2902 . . . . . . . 8 𝑘 +
16 nfcv 2902 . . . . . . . 8 𝑘𝑋
1714, 15, 16nfov 7460 . . . . . . 7 𝑘((𝐹𝑙) + 𝑋)
1811, 12, 17nfbr 5194 . . . . . 6 𝑘(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)
19 nfv 1911 . . . . . 6 𝑙(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)
20 fveq2 6906 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2120oveq1d 7445 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) + 𝑋) = ((𝐹𝑘) + 𝑋))
2221breq2d 5159 . . . . . 6 (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2318, 19, 22cbvralw 3303 . . . . 5 (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
2423a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
258, 24bitrd 279 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2625cbvrexvw 3235 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
276, 26sylib 218 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  wnfc 2887  wral 3058  wrex 3067   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  cr 11151   + caddc 11155   < clt 11292  cz 12610  cuz 12875  +crp 13031  lim infclsi 45706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-ceil 13829  df-limsup 15503  df-liminf 45707
This theorem is referenced by:  liminflimsupclim  45762
  Copyright terms: Public domain W3C validator