| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflt | Structured version Visualization version GIF version | ||
| Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflt.k | ⊢ Ⅎ𝑘𝐹 |
| liminflt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminflt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminflt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| liminflt.r | ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
| liminflt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| liminflt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | liminflt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | liminflt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | liminflt.r | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) | |
| 5 | liminflt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 6 | 1, 2, 3, 4, 5 | liminfltlem 45785 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋)) |
| 7 | fveq2 6822 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 8 | 7 | raleqdv 3289 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋))) |
| 9 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘lim inf | |
| 10 | liminflt.k | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
| 11 | 9, 10 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑘(lim inf‘𝐹) |
| 12 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
| 13 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
| 14 | 10, 13 | nffv 6832 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
| 15 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘 + | |
| 16 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
| 17 | 14, 15, 16 | nfov 7379 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) + 𝑋) |
| 18 | 11, 12, 17 | nfbr 5139 | . . . . . 6 ⊢ Ⅎ𝑘(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) |
| 19 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑙(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋) | |
| 20 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
| 21 | 20 | oveq1d 7364 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) + 𝑋) = ((𝐹‘𝑘) + 𝑋)) |
| 22 | 21 | breq2d 5104 | . . . . . 6 ⊢ (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 23 | 18, 19, 22 | cbvralw 3271 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 25 | 8, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 26 | 25 | cbvrexvw 3208 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| 27 | 6, 26 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 + caddc 11012 < clt 11149 ℤcz 12471 ℤ≥cuz 12735 ℝ+crp 12893 lim infclsi 45732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-ceil 13697 df-limsup 15378 df-liminf 45733 |
| This theorem is referenced by: liminflimsupclim 45788 |
| Copyright terms: Public domain | W3C validator |