| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflt | Structured version Visualization version GIF version | ||
| Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflt.k | ⊢ Ⅎ𝑘𝐹 |
| liminflt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminflt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminflt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| liminflt.r | ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
| liminflt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| liminflt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | liminflt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | liminflt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | liminflt.r | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) | |
| 5 | liminflt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 6 | 1, 2, 3, 4, 5 | liminfltlem 45850 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋)) |
| 7 | fveq2 6822 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 8 | 7 | raleqdv 3292 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋))) |
| 9 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘lim inf | |
| 10 | liminflt.k | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
| 11 | 9, 10 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑘(lim inf‘𝐹) |
| 12 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
| 13 | nfcv 2894 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
| 14 | 10, 13 | nffv 6832 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
| 15 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘 + | |
| 16 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
| 17 | 14, 15, 16 | nfov 7376 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) + 𝑋) |
| 18 | 11, 12, 17 | nfbr 5136 | . . . . . 6 ⊢ Ⅎ𝑘(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) |
| 19 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑙(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋) | |
| 20 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
| 21 | 20 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) + 𝑋) = ((𝐹‘𝑘) + 𝑋)) |
| 22 | 21 | breq2d 5101 | . . . . . 6 ⊢ (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 23 | 18, 19, 22 | cbvralw 3274 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 25 | 8, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 26 | 25 | cbvrexvw 3211 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| 27 | 6, 26 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 + caddc 11009 < clt 11146 ℤcz 12468 ℤ≥cuz 12732 ℝ+crp 12890 lim infclsi 45797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-ceil 13697 df-limsup 15378 df-liminf 45798 |
| This theorem is referenced by: liminflimsupclim 45853 |
| Copyright terms: Public domain | W3C validator |