| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminflt | Structured version Visualization version GIF version | ||
| Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminflt.k | ⊢ Ⅎ𝑘𝐹 |
| liminflt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| liminflt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| liminflt.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| liminflt.r | ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) |
| liminflt.x | ⊢ (𝜑 → 𝑋 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| liminflt | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminflt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | liminflt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 3 | liminflt.f | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | liminflt.r | . . 3 ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) | |
| 5 | liminflt.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℝ+) | |
| 6 | 1, 2, 3, 4, 5 | liminfltlem 45833 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋)) |
| 7 | fveq2 6876 | . . . . 5 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
| 8 | 7 | raleqdv 3305 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋))) |
| 9 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑘lim inf | |
| 10 | liminflt.k | . . . . . . . 8 ⊢ Ⅎ𝑘𝐹 | |
| 11 | 9, 10 | nffv 6886 | . . . . . . 7 ⊢ Ⅎ𝑘(lim inf‘𝐹) |
| 12 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑘 < | |
| 13 | nfcv 2898 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝑙 | |
| 14 | 10, 13 | nffv 6886 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑙) |
| 15 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑘 + | |
| 16 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑋 | |
| 17 | 14, 15, 16 | nfov 7435 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑙) + 𝑋) |
| 18 | 11, 12, 17 | nfbr 5166 | . . . . . 6 ⊢ Ⅎ𝑘(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) |
| 19 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑙(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋) | |
| 20 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) | |
| 21 | 20 | oveq1d 7420 | . . . . . . 7 ⊢ (𝑙 = 𝑘 → ((𝐹‘𝑙) + 𝑋) = ((𝐹‘𝑘) + 𝑋)) |
| 22 | 21 | breq2d 5131 | . . . . . 6 ⊢ (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 23 | 18, 19, 22 | cbvralw 3286 | . . . . 5 ⊢ (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 25 | 8, 24 | bitrd 279 | . . 3 ⊢ (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋))) |
| 26 | 25 | cbvrexvw 3221 | . 2 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑙 ∈ (ℤ≥‘𝑖)(lim inf‘𝐹) < ((𝐹‘𝑙) + 𝑋) ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| 27 | 6, 26 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ∀wral 3051 ∃wrex 3060 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 + caddc 11132 < clt 11269 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 lim infclsi 45780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-ceil 13810 df-limsup 15487 df-liminf 45781 |
| This theorem is referenced by: liminflimsupclim 45836 |
| Copyright terms: Public domain | W3C validator |