Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflt Structured version   Visualization version   GIF version

Theorem liminflt 40548
Description: Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminflt.k 𝑘𝐹
liminflt.m (𝜑𝑀 ∈ ℤ)
liminflt.z 𝑍 = (ℤ𝑀)
liminflt.f (𝜑𝐹:𝑍⟶ℝ)
liminflt.r (𝜑 → (lim inf‘𝐹) ∈ ℝ)
liminflt.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
liminflt (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Distinct variable groups:   𝑗,𝐹   𝑗,𝑋,𝑘   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑘)

Proof of Theorem liminflt
Dummy variables 𝑖 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 liminflt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 liminflt.z . . 3 𝑍 = (ℤ𝑀)
3 liminflt.f . . 3 (𝜑𝐹:𝑍⟶ℝ)
4 liminflt.r . . 3 (𝜑 → (lim inf‘𝐹) ∈ ℝ)
5 liminflt.x . . 3 (𝜑𝑋 ∈ ℝ+)
61, 2, 3, 4, 5liminfltlem 40547 . 2 (𝜑 → ∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋))
7 fveq2 6330 . . . . 5 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3293 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)))
9 nfcv 2913 . . . . . . . 8 𝑘lim inf
10 liminflt.k . . . . . . . 8 𝑘𝐹
119, 10nffv 6337 . . . . . . 7 𝑘(lim inf‘𝐹)
12 nfcv 2913 . . . . . . 7 𝑘 <
13 nfcv 2913 . . . . . . . . 9 𝑘𝑙
1410, 13nffv 6337 . . . . . . . 8 𝑘(𝐹𝑙)
15 nfcv 2913 . . . . . . . 8 𝑘 +
16 nfcv 2913 . . . . . . . 8 𝑘𝑋
1714, 15, 16nfov 6819 . . . . . . 7 𝑘((𝐹𝑙) + 𝑋)
1811, 12, 17nfbr 4833 . . . . . 6 𝑘(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋)
19 nfv 1995 . . . . . 6 𝑙(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)
20 fveq2 6330 . . . . . . . 8 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2120oveq1d 6806 . . . . . . 7 (𝑙 = 𝑘 → ((𝐹𝑙) + 𝑋) = ((𝐹𝑘) + 𝑋))
2221breq2d 4798 . . . . . 6 (𝑙 = 𝑘 → ((lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ (lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2318, 19, 22cbvral 3316 . . . . 5 (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
2423a1i 11 . . . 4 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
258, 24bitrd 268 . . 3 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∀𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋)))
2625cbvrexv 3321 . 2 (∃𝑖𝑍𝑙 ∈ (ℤ𝑖)(lim inf‘𝐹) < ((𝐹𝑙) + 𝑋) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
276, 26sylib 208 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(lim inf‘𝐹) < ((𝐹𝑘) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  wnfc 2900  wral 3061  wrex 3062   class class class wbr 4786  wf 6025  cfv 6029  (class class class)co 6791  cr 10135   + caddc 10139   < clt 10274  cz 11577  cuz 11886  +crp 12028  lim infclsi 40494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-n0 11493  df-z 11578  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-ico 12379  df-fz 12527  df-fzo 12667  df-fl 12794  df-ceil 12795  df-limsup 14403  df-liminf 40495
This theorem is referenced by:  liminflimsupclim  40550
  Copyright terms: Public domain W3C validator