![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmplusgvalb | Structured version Visualization version GIF version |
Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmplusgvalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmplusgvalb.a | ⊢ + = (+g‘𝑅) |
frlmplusgvalb.p | ⊢ ✚ = (+g‘𝐹) |
Ref | Expression |
---|---|
frlmplusgvalb | ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | frlmplusgvalb.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
3 | frlmplusgvalb.f | . . . . . . 7 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
4 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | frlmplusgvalb.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5 | frlmbasmap 21181 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ ((Base‘𝑅) ↑m 𝐼)) |
7 | 1, 2, 6 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((Base‘𝑅) ↑m 𝐼)) |
8 | fvexd 6858 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
9 | 8, 1 | elmapd 8782 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑍:𝐼⟶(Base‘𝑅))) |
10 | 7, 9 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑍:𝐼⟶(Base‘𝑅)) |
11 | 10 | ffnd 6670 | . . 3 ⊢ (𝜑 → 𝑍 Fn 𝐼) |
12 | frlmplusgvalb.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | 3 | frlmlmod 21171 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
14 | 12, 1, 13 | syl2anc 585 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ LMod) |
15 | lmodgrp 20343 | . . . . . . . 8 ⊢ (𝐹 ∈ LMod → 𝐹 ∈ Grp) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Grp) |
17 | frlmplusgvalb.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | frlmplusgvalb.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
19 | frlmplusgvalb.p | . . . . . . . 8 ⊢ ✚ = (+g‘𝐹) | |
20 | 5, 19 | grpcl 18761 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) ∈ 𝐵) |
21 | 16, 17, 18, 20 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝑋 ✚ 𝑌) ∈ 𝐵) |
22 | 3, 4, 5 | frlmbasmap 21181 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑋 ✚ 𝑌) ∈ 𝐵) → (𝑋 ✚ 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼)) |
23 | 1, 21, 22 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (𝑋 ✚ 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼)) |
24 | 8, 1 | elmapd 8782 | . . . . 5 ⊢ (𝜑 → ((𝑋 ✚ 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑋 ✚ 𝑌):𝐼⟶(Base‘𝑅))) |
25 | 23, 24 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝑋 ✚ 𝑌):𝐼⟶(Base‘𝑅)) |
26 | 25 | ffnd 6670 | . . 3 ⊢ (𝜑 → (𝑋 ✚ 𝑌) Fn 𝐼) |
27 | eqfnfv 6983 | . . 3 ⊢ ((𝑍 Fn 𝐼 ∧ (𝑋 ✚ 𝑌) Fn 𝐼) → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖))) | |
28 | 11, 26, 27 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖))) |
29 | 12 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑅 ∈ Ring) |
30 | 1 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
31 | 17 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
32 | 18 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑌 ∈ 𝐵) |
33 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
34 | frlmplusgvalb.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
35 | 3, 5, 29, 30, 31, 32, 33, 34, 19 | frlmvplusgvalc 21189 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑋 ✚ 𝑌)‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖))) |
36 | 35 | eqeq2d 2744 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖) ↔ (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
37 | 36 | ralbidva 3169 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
38 | 28, 37 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 Fn wfn 6492 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 ↑m cmap 8768 Basecbs 17088 +gcplusg 17138 Grpcgrp 18753 Ringcrg 19969 LModclmod 20336 freeLMod cfrlm 21168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-ixp 8839 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-ip 17156 df-tset 17157 df-ple 17158 df-ds 17160 df-hom 17162 df-cco 17163 df-0g 17328 df-prds 17334 df-pws 17336 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 df-minusg 18757 df-sbg 18758 df-subg 18930 df-mgp 19902 df-ur 19919 df-ring 19971 df-subrg 20234 df-lmod 20338 df-lss 20408 df-sra 20649 df-rgmod 20650 df-dsmm 21154 df-frlm 21169 |
This theorem is referenced by: frlmvplusgscavalb 21193 |
Copyright terms: Public domain | W3C validator |