MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgvalb Structured version   Visualization version   GIF version

Theorem frlmplusgvalb 20913
Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmplusgvalb.y (𝜑𝑌𝐵)
frlmplusgvalb.a + = (+g𝑅)
frlmplusgvalb.p = (+g𝐹)
Assertion
Ref Expression
frlmplusgvalb (𝜑 → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝑖,𝑌   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   + (𝑖)   𝑅(𝑖)   𝐹(𝑖)   𝑊(𝑖)

Proof of Theorem frlmplusgvalb
StepHypRef Expression
1 frlmplusgvalb.i . . . . . 6 (𝜑𝐼𝑊)
2 frlmplusgvalb.z . . . . . 6 (𝜑𝑍𝐵)
3 frlmplusgvalb.f . . . . . . 7 𝐹 = (𝑅 freeLMod 𝐼)
4 eqid 2821 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5 frlmplusgvalb.b . . . . . . 7 𝐵 = (Base‘𝐹)
63, 4, 5frlmbasmap 20903 . . . . . 6 ((𝐼𝑊𝑍𝐵) → 𝑍 ∈ ((Base‘𝑅) ↑m 𝐼))
71, 2, 6syl2anc 586 . . . . 5 (𝜑𝑍 ∈ ((Base‘𝑅) ↑m 𝐼))
8 fvexd 6685 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
98, 1elmapd 8420 . . . . 5 (𝜑 → (𝑍 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑍:𝐼⟶(Base‘𝑅)))
107, 9mpbid 234 . . . 4 (𝜑𝑍:𝐼⟶(Base‘𝑅))
1110ffnd 6515 . . 3 (𝜑𝑍 Fn 𝐼)
12 frlmplusgvalb.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
133frlmlmod 20893 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
1412, 1, 13syl2anc 586 . . . . . . . 8 (𝜑𝐹 ∈ LMod)
15 lmodgrp 19641 . . . . . . . 8 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ Grp)
17 frlmplusgvalb.x . . . . . . 7 (𝜑𝑋𝐵)
18 frlmplusgvalb.y . . . . . . 7 (𝜑𝑌𝐵)
19 frlmplusgvalb.p . . . . . . . 8 = (+g𝐹)
205, 19grpcl 18111 . . . . . . 7 ((𝐹 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2116, 17, 18, 20syl3anc 1367 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
223, 4, 5frlmbasmap 20903 . . . . . 6 ((𝐼𝑊 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼))
231, 21, 22syl2anc 586 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼))
248, 1elmapd 8420 . . . . 5 (𝜑 → ((𝑋 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑋 𝑌):𝐼⟶(Base‘𝑅)))
2523, 24mpbid 234 . . . 4 (𝜑 → (𝑋 𝑌):𝐼⟶(Base‘𝑅))
2625ffnd 6515 . . 3 (𝜑 → (𝑋 𝑌) Fn 𝐼)
27 eqfnfv 6802 . . 3 ((𝑍 Fn 𝐼 ∧ (𝑋 𝑌) Fn 𝐼) → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋 𝑌)‘𝑖)))
2811, 26, 27syl2anc 586 . 2 (𝜑 → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋 𝑌)‘𝑖)))
2912adantr 483 . . . . 5 ((𝜑𝑖𝐼) → 𝑅 ∈ Ring)
301adantr 483 . . . . 5 ((𝜑𝑖𝐼) → 𝐼𝑊)
3117adantr 483 . . . . 5 ((𝜑𝑖𝐼) → 𝑋𝐵)
3218adantr 483 . . . . 5 ((𝜑𝑖𝐼) → 𝑌𝐵)
33 simpr 487 . . . . 5 ((𝜑𝑖𝐼) → 𝑖𝐼)
34 frlmplusgvalb.a . . . . 5 + = (+g𝑅)
353, 5, 29, 30, 31, 32, 33, 34, 19frlmvplusgvalc 20911 . . . 4 ((𝜑𝑖𝐼) → ((𝑋 𝑌)‘𝑖) = ((𝑋𝑖) + (𝑌𝑖)))
3635eqeq2d 2832 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = ((𝑋 𝑌)‘𝑖) ↔ (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
3736ralbidva 3196 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = ((𝑋 𝑌)‘𝑖) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
3828, 37bitrd 281 1 (𝜑 → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  Ringcrg 19297  LModclmod 19634   freeLMod cfrlm 20890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-dsmm 20876  df-frlm 20891
This theorem is referenced by:  frlmvplusgscavalb  20915
  Copyright terms: Public domain W3C validator