MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmplusgvalb Structured version   Visualization version   GIF version

Theorem frlmplusgvalb 21685
Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmplusgvalb.y (𝜑𝑌𝐵)
frlmplusgvalb.a + = (+g𝑅)
frlmplusgvalb.p = (+g𝐹)
Assertion
Ref Expression
frlmplusgvalb (𝜑 → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝑖,𝑌   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   + (𝑖)   𝑅(𝑖)   𝐹(𝑖)   𝑊(𝑖)

Proof of Theorem frlmplusgvalb
StepHypRef Expression
1 frlmplusgvalb.i . . . . . 6 (𝜑𝐼𝑊)
2 frlmplusgvalb.z . . . . . 6 (𝜑𝑍𝐵)
3 frlmplusgvalb.f . . . . . . 7 𝐹 = (𝑅 freeLMod 𝐼)
4 eqid 2730 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
5 frlmplusgvalb.b . . . . . . 7 𝐵 = (Base‘𝐹)
63, 4, 5frlmbasmap 21675 . . . . . 6 ((𝐼𝑊𝑍𝐵) → 𝑍 ∈ ((Base‘𝑅) ↑m 𝐼))
71, 2, 6syl2anc 584 . . . . 5 (𝜑𝑍 ∈ ((Base‘𝑅) ↑m 𝐼))
8 fvexd 6876 . . . . . 6 (𝜑 → (Base‘𝑅) ∈ V)
98, 1elmapd 8816 . . . . 5 (𝜑 → (𝑍 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑍:𝐼⟶(Base‘𝑅)))
107, 9mpbid 232 . . . 4 (𝜑𝑍:𝐼⟶(Base‘𝑅))
1110ffnd 6692 . . 3 (𝜑𝑍 Fn 𝐼)
12 frlmplusgvalb.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
133frlmlmod 21665 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
1412, 1, 13syl2anc 584 . . . . . . . 8 (𝜑𝐹 ∈ LMod)
15 lmodgrp 20780 . . . . . . . 8 (𝐹 ∈ LMod → 𝐹 ∈ Grp)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹 ∈ Grp)
17 frlmplusgvalb.x . . . . . . 7 (𝜑𝑋𝐵)
18 frlmplusgvalb.y . . . . . . 7 (𝜑𝑌𝐵)
19 frlmplusgvalb.p . . . . . . . 8 = (+g𝐹)
205, 19grpcl 18880 . . . . . . 7 ((𝐹 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
2116, 17, 18, 20syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
223, 4, 5frlmbasmap 21675 . . . . . 6 ((𝐼𝑊 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑋 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼))
231, 21, 22syl2anc 584 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼))
248, 1elmapd 8816 . . . . 5 (𝜑 → ((𝑋 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑋 𝑌):𝐼⟶(Base‘𝑅)))
2523, 24mpbid 232 . . . 4 (𝜑 → (𝑋 𝑌):𝐼⟶(Base‘𝑅))
2625ffnd 6692 . . 3 (𝜑 → (𝑋 𝑌) Fn 𝐼)
27 eqfnfv 7006 . . 3 ((𝑍 Fn 𝐼 ∧ (𝑋 𝑌) Fn 𝐼) → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋 𝑌)‘𝑖)))
2811, 26, 27syl2anc 584 . 2 (𝜑 → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋 𝑌)‘𝑖)))
2912adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝑅 ∈ Ring)
301adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝐼𝑊)
3117adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝑋𝐵)
3218adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝑌𝐵)
33 simpr 484 . . . . 5 ((𝜑𝑖𝐼) → 𝑖𝐼)
34 frlmplusgvalb.a . . . . 5 + = (+g𝑅)
353, 5, 29, 30, 31, 32, 33, 34, 19frlmvplusgvalc 21683 . . . 4 ((𝜑𝑖𝐼) → ((𝑋 𝑌)‘𝑖) = ((𝑋𝑖) + (𝑌𝑖)))
3635eqeq2d 2741 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = ((𝑋 𝑌)‘𝑖) ↔ (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
3736ralbidva 3155 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = ((𝑋 𝑌)‘𝑖) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
3828, 37bitrd 279 1 (𝜑 → (𝑍 = (𝑋 𝑌) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝑋𝑖) + (𝑌𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  Ringcrg 20149  LModclmod 20773   freeLMod cfrlm 21662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663
This theorem is referenced by:  frlmvplusgscavalb  21687
  Copyright terms: Public domain W3C validator