Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmplusgvalb | Structured version Visualization version GIF version |
Description: Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmplusgvalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmplusgvalb.a | ⊢ + = (+g‘𝑅) |
frlmplusgvalb.p | ⊢ ✚ = (+g‘𝐹) |
Ref | Expression |
---|---|
frlmplusgvalb | ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | frlmplusgvalb.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
3 | frlmplusgvalb.f | . . . . . . 7 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
4 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | frlmplusgvalb.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5 | frlmbasmap 20721 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ ((Base‘𝑅) ↑m 𝐼)) |
7 | 1, 2, 6 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((Base‘𝑅) ↑m 𝐼)) |
8 | fvexd 6732 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | |
9 | 8, 1 | elmapd 8522 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ ((Base‘𝑅) ↑m 𝐼) ↔ 𝑍:𝐼⟶(Base‘𝑅))) |
10 | 7, 9 | mpbid 235 | . . . 4 ⊢ (𝜑 → 𝑍:𝐼⟶(Base‘𝑅)) |
11 | 10 | ffnd 6546 | . . 3 ⊢ (𝜑 → 𝑍 Fn 𝐼) |
12 | frlmplusgvalb.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | 3 | frlmlmod 20711 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
14 | 12, 1, 13 | syl2anc 587 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ LMod) |
15 | lmodgrp 19906 | . . . . . . . 8 ⊢ (𝐹 ∈ LMod → 𝐹 ∈ Grp) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Grp) |
17 | frlmplusgvalb.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | frlmplusgvalb.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
19 | frlmplusgvalb.p | . . . . . . . 8 ⊢ ✚ = (+g‘𝐹) | |
20 | 5, 19 | grpcl 18373 | . . . . . . 7 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) ∈ 𝐵) |
21 | 16, 17, 18, 20 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑋 ✚ 𝑌) ∈ 𝐵) |
22 | 3, 4, 5 | frlmbasmap 20721 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑋 ✚ 𝑌) ∈ 𝐵) → (𝑋 ✚ 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼)) |
23 | 1, 21, 22 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (𝑋 ✚ 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼)) |
24 | 8, 1 | elmapd 8522 | . . . . 5 ⊢ (𝜑 → ((𝑋 ✚ 𝑌) ∈ ((Base‘𝑅) ↑m 𝐼) ↔ (𝑋 ✚ 𝑌):𝐼⟶(Base‘𝑅))) |
25 | 23, 24 | mpbid 235 | . . . 4 ⊢ (𝜑 → (𝑋 ✚ 𝑌):𝐼⟶(Base‘𝑅)) |
26 | 25 | ffnd 6546 | . . 3 ⊢ (𝜑 → (𝑋 ✚ 𝑌) Fn 𝐼) |
27 | eqfnfv 6852 | . . 3 ⊢ ((𝑍 Fn 𝐼 ∧ (𝑋 ✚ 𝑌) Fn 𝐼) → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖))) | |
28 | 11, 26, 27 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖))) |
29 | 12 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑅 ∈ Ring) |
30 | 1 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
31 | 17 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
32 | 18 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑌 ∈ 𝐵) |
33 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
34 | frlmplusgvalb.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
35 | 3, 5, 29, 30, 31, 32, 33, 34, 19 | frlmvplusgvalc 20729 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑋 ✚ 𝑌)‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖))) |
36 | 35 | eqeq2d 2748 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖) ↔ (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
37 | 36 | ralbidva 3117 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋 ✚ 𝑌)‘𝑖) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
38 | 28, 37 | bitrd 282 | 1 ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 Fn wfn 6375 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 Basecbs 16760 +gcplusg 16802 Grpcgrp 18365 Ringcrg 19562 LModclmod 19899 freeLMod cfrlm 20708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-hom 16826 df-cco 16827 df-0g 16946 df-prds 16952 df-pws 16954 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-mgp 19505 df-ur 19517 df-ring 19564 df-subrg 19798 df-lmod 19901 df-lss 19969 df-sra 20209 df-rgmod 20210 df-dsmm 20694 df-frlm 20709 |
This theorem is referenced by: frlmvplusgscavalb 20733 |
Copyright terms: Public domain | W3C validator |