MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsubgval Structured version   Visualization version   GIF version

Theorem frlmsubgval 21702
Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
frlmsubval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsubval.b 𝐵 = (Base‘𝑌)
frlmsubval.r (𝜑𝑅 ∈ Ring)
frlmsubval.i (𝜑𝐼𝑊)
frlmsubval.f (𝜑𝐹𝐵)
frlmsubval.g (𝜑𝐺𝐵)
frlmsubval.a = (-g𝑅)
frlmsubval.p 𝑀 = (-g𝑌)
Assertion
Ref Expression
frlmsubgval (𝜑 → (𝐹𝑀𝐺) = (𝐹f 𝐺))

Proof of Theorem frlmsubgval
StepHypRef Expression
1 frlmsubval.p . . . 4 𝑀 = (-g𝑌)
2 frlmsubval.r . . . . . 6 (𝜑𝑅 ∈ Ring)
3 frlmsubval.i . . . . . 6 (𝜑𝐼𝑊)
4 frlmsubval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmsubval.b . . . . . . 7 𝐵 = (Base‘𝑌)
64, 5frlmpws 21687 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
72, 3, 6syl2anc 584 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
87fveq2d 6826 . . . 4 (𝜑 → (-g𝑌) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
91, 8eqtrid 2778 . . 3 (𝜑𝑀 = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
109oveqd 7363 . 2 (𝜑 → (𝐹𝑀𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
11 rlmlmod 21137 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
122, 11syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
13 eqid 2731 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
1413pwslmod 20903 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
1512, 3, 14syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
16 eqid 2731 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
174, 5, 16frlmlss 21688 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
182, 3, 17syl2anc 584 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
1916lsssubg 20890 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
2015, 18, 19syl2anc 584 . . 3 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
21 frlmsubval.f . . 3 (𝜑𝐹𝐵)
22 frlmsubval.g . . 3 (𝜑𝐺𝐵)
23 eqid 2731 . . . 4 (-g‘((ringLMod‘𝑅) ↑s 𝐼)) = (-g‘((ringLMod‘𝑅) ↑s 𝐼))
24 eqid 2731 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
25 eqid 2731 . . . 4 (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2623, 24, 25subgsub 19051 . . 3 ((𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐹𝐵𝐺𝐵) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
2720, 21, 22, 26syl3anc 1373 . 2 (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
28 lmodgrp 20800 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
292, 11, 283syl 18 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ Grp)
30 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
314, 30, 5frlmbasmap 21696 . . . . 5 ((𝐼𝑊𝐹𝐵) → 𝐹 ∈ ((Base‘𝑅) ↑m 𝐼))
323, 21, 31syl2anc 584 . . . 4 (𝜑𝐹 ∈ ((Base‘𝑅) ↑m 𝐼))
33 rlmbas 21127 . . . . . 6 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
3413, 33pwsbas 17391 . . . . 5 (((ringLMod‘𝑅) ∈ Grp ∧ 𝐼𝑊) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3529, 3, 34syl2anc 584 . . . 4 (𝜑 → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3632, 35eleqtrd 2833 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
374, 30, 5frlmbasmap 21696 . . . . 5 ((𝐼𝑊𝐺𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑m 𝐼))
383, 22, 37syl2anc 584 . . . 4 (𝜑𝐺 ∈ ((Base‘𝑅) ↑m 𝐼))
3938, 35eleqtrd 2833 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
40 eqid 2731 . . . 4 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
41 frlmsubval.a . . . . 5 = (-g𝑅)
42 rlmsub 21130 . . . . 5 (-g𝑅) = (-g‘(ringLMod‘𝑅))
4341, 42eqtri 2754 . . . 4 = (-g‘(ringLMod‘𝑅))
4413, 40, 43, 23pwssub 18967 . . 3 ((((ringLMod‘𝑅) ∈ Grp ∧ 𝐼𝑊) ∧ (𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f 𝐺))
4529, 3, 36, 39, 44syl22anc 838 . 2 (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f 𝐺))
4610, 27, 453eqtr2d 2772 1 (𝜑 → (𝐹𝑀𝐺) = (𝐹f 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Basecbs 17120  s cress 17141  s cpws 17350  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033  Ringcrg 20151  LModclmod 20793  LSubSpclss 20864  ringLModcrglmod 21106   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  matsubgcell  22349  rrxds  25320
  Copyright terms: Public domain W3C validator