Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmsubgval | Structured version Visualization version GIF version |
Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
frlmsubval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsubval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsubval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmsubval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmsubval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
frlmsubval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
frlmsubval.a | ⊢ − = (-g‘𝑅) |
frlmsubval.p | ⊢ 𝑀 = (-g‘𝑌) |
Ref | Expression |
---|---|
frlmsubgval | ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘f − 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsubval.p | . . . 4 ⊢ 𝑀 = (-g‘𝑌) | |
2 | frlmsubval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | frlmsubval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | frlmsubval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
5 | frlmsubval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
6 | 4, 5 | frlmpws 20867 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
7 | 2, 3, 6 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
8 | 7 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (-g‘𝑌) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
9 | 1, 8 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 𝑀 = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
10 | 9 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
11 | rlmlmod 20388 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
13 | eqid 2738 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
14 | 13 | pwslmod 20147 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
15 | 12, 3, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
16 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
17 | 4, 5, 16 | frlmlss 20868 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
18 | 2, 3, 17 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
19 | 16 | lsssubg 20134 | . . . 4 ⊢ ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
20 | 15, 18, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
21 | frlmsubval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
22 | frlmsubval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
23 | eqid 2738 | . . . 4 ⊢ (-g‘((ringLMod‘𝑅) ↑s 𝐼)) = (-g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
24 | eqid 2738 | . . . 4 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
25 | eqid 2738 | . . . 4 ⊢ (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) | |
26 | 23, 24, 25 | subgsub 18682 | . . 3 ⊢ ((𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
27 | 20, 21, 22, 26 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
28 | lmodgrp 20045 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp) | |
29 | 2, 11, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ Grp) |
30 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 4, 30, 5 | frlmbasmap 20876 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝐹 ∈ 𝐵) → 𝐹 ∈ ((Base‘𝑅) ↑m 𝐼)) |
32 | 3, 21, 31 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m 𝐼)) |
33 | rlmbas 20378 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
34 | 13, 33 | pwsbas 17115 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ Grp ∧ 𝐼 ∈ 𝑊) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
35 | 29, 3, 34 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
36 | 32, 35 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
37 | 4, 30, 5 | frlmbasmap 20876 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑m 𝐼)) |
38 | 3, 22, 37 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑m 𝐼)) |
39 | 38, 35 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
40 | eqid 2738 | . . . 4 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
41 | frlmsubval.a | . . . . 5 ⊢ − = (-g‘𝑅) | |
42 | rlmsub 20381 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘(ringLMod‘𝑅)) | |
43 | 41, 42 | eqtri 2766 | . . . 4 ⊢ − = (-g‘(ringLMod‘𝑅)) |
44 | 13, 40, 43, 23 | pwssub 18604 | . . 3 ⊢ ((((ringLMod‘𝑅) ∈ Grp ∧ 𝐼 ∈ 𝑊) ∧ (𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘f − 𝐺)) |
45 | 29, 3, 36, 39, 44 | syl22anc 835 | . 2 ⊢ (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘f − 𝐺)) |
46 | 10, 27, 45 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘f − 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ↑m cmap 8573 Basecbs 16840 ↾s cress 16867 ↑s cpws 17074 Grpcgrp 18492 -gcsg 18494 SubGrpcsubg 18664 Ringcrg 19698 LModclmod 20038 LSubSpclss 20108 ringLModcrglmod 20346 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: matsubgcell 21491 rrxds 24462 |
Copyright terms: Public domain | W3C validator |