MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmsubgval Structured version   Visualization version   GIF version

Theorem frlmsubgval 20882
Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
frlmsubval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmsubval.b 𝐵 = (Base‘𝑌)
frlmsubval.r (𝜑𝑅 ∈ Ring)
frlmsubval.i (𝜑𝐼𝑊)
frlmsubval.f (𝜑𝐹𝐵)
frlmsubval.g (𝜑𝐺𝐵)
frlmsubval.a = (-g𝑅)
frlmsubval.p 𝑀 = (-g𝑌)
Assertion
Ref Expression
frlmsubgval (𝜑 → (𝐹𝑀𝐺) = (𝐹f 𝐺))

Proof of Theorem frlmsubgval
StepHypRef Expression
1 frlmsubval.p . . . 4 𝑀 = (-g𝑌)
2 frlmsubval.r . . . . . 6 (𝜑𝑅 ∈ Ring)
3 frlmsubval.i . . . . . 6 (𝜑𝐼𝑊)
4 frlmsubval.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmsubval.b . . . . . . 7 𝐵 = (Base‘𝑌)
64, 5frlmpws 20867 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
72, 3, 6syl2anc 583 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
87fveq2d 6760 . . . 4 (𝜑 → (-g𝑌) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
91, 8eqtrid 2790 . . 3 (𝜑𝑀 = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
109oveqd 7272 . 2 (𝜑 → (𝐹𝑀𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
11 rlmlmod 20388 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
122, 11syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
13 eqid 2738 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
1413pwslmod 20147 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
1512, 3, 14syl2anc 583 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
16 eqid 2738 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
174, 5, 16frlmlss 20868 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
182, 3, 17syl2anc 583 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
1916lsssubg 20134 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
2015, 18, 19syl2anc 583 . . 3 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
21 frlmsubval.f . . 3 (𝜑𝐹𝐵)
22 frlmsubval.g . . 3 (𝜑𝐺𝐵)
23 eqid 2738 . . . 4 (-g‘((ringLMod‘𝑅) ↑s 𝐼)) = (-g‘((ringLMod‘𝑅) ↑s 𝐼))
24 eqid 2738 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
25 eqid 2738 . . . 4 (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
2623, 24, 25subgsub 18682 . . 3 ((𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐹𝐵𝐺𝐵) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
2720, 21, 22, 26syl3anc 1369 . 2 (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺))
28 lmodgrp 20045 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
292, 11, 283syl 18 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ Grp)
30 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
314, 30, 5frlmbasmap 20876 . . . . 5 ((𝐼𝑊𝐹𝐵) → 𝐹 ∈ ((Base‘𝑅) ↑m 𝐼))
323, 21, 31syl2anc 583 . . . 4 (𝜑𝐹 ∈ ((Base‘𝑅) ↑m 𝐼))
33 rlmbas 20378 . . . . . 6 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
3413, 33pwsbas 17115 . . . . 5 (((ringLMod‘𝑅) ∈ Grp ∧ 𝐼𝑊) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3529, 3, 34syl2anc 583 . . . 4 (𝜑 → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3632, 35eleqtrd 2841 . . 3 (𝜑𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
374, 30, 5frlmbasmap 20876 . . . . 5 ((𝐼𝑊𝐺𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑m 𝐼))
383, 22, 37syl2anc 583 . . . 4 (𝜑𝐺 ∈ ((Base‘𝑅) ↑m 𝐼))
3938, 35eleqtrd 2841 . . 3 (𝜑𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
40 eqid 2738 . . . 4 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
41 frlmsubval.a . . . . 5 = (-g𝑅)
42 rlmsub 20381 . . . . 5 (-g𝑅) = (-g‘(ringLMod‘𝑅))
4341, 42eqtri 2766 . . . 4 = (-g‘(ringLMod‘𝑅))
4413, 40, 43, 23pwssub 18604 . . 3 ((((ringLMod‘𝑅) ∈ Grp ∧ 𝐼𝑊) ∧ (𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f 𝐺))
4529, 3, 36, 39, 44syl22anc 835 . 2 (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹f 𝐺))
4610, 27, 453eqtr2d 2784 1 (𝜑 → (𝐹𝑀𝐺) = (𝐹f 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573  Basecbs 16840  s cress 16867  s cpws 17074  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664  Ringcrg 19698  LModclmod 20038  LSubSpclss 20108  ringLModcrglmod 20346   freeLMod cfrlm 20863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864
This theorem is referenced by:  matsubgcell  21491  rrxds  24462
  Copyright terms: Public domain W3C validator