Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmsubgval | Structured version Visualization version GIF version |
Description: Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
frlmsubval.y | ⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
frlmsubval.b | ⊢ 𝐵 = (Base‘𝑌) |
frlmsubval.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmsubval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmsubval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
frlmsubval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
frlmsubval.a | ⊢ − = (-g‘𝑅) |
frlmsubval.p | ⊢ 𝑀 = (-g‘𝑌) |
Ref | Expression |
---|---|
frlmsubgval | ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘f − 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmsubval.p | . . . 4 ⊢ 𝑀 = (-g‘𝑌) | |
2 | frlmsubval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | frlmsubval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | frlmsubval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 freeLMod 𝐼) | |
5 | frlmsubval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑌) | |
6 | 4, 5 | frlmpws 20957 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
7 | 2, 3, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
8 | 7 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → (-g‘𝑌) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
9 | 1, 8 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 𝑀 = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
10 | 9 | oveqd 7292 | . 2 ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
11 | rlmlmod 20475 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
12 | 2, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
13 | eqid 2738 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
14 | 13 | pwslmod 20232 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
15 | 12, 3, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
16 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
17 | 4, 5, 16 | frlmlss 20958 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
18 | 2, 3, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
19 | 16 | lsssubg 20219 | . . . 4 ⊢ ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
20 | 15, 18, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
21 | frlmsubval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
22 | frlmsubval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
23 | eqid 2738 | . . . 4 ⊢ (-g‘((ringLMod‘𝑅) ↑s 𝐼)) = (-g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
24 | eqid 2738 | . . . 4 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | |
25 | eqid 2738 | . . . 4 ⊢ (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) = (-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) | |
26 | 23, 24, 25 | subgsub 18767 | . . 3 ⊢ ((𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
27 | 20, 21, 22, 26 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹(-g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))𝐺)) |
28 | lmodgrp 20130 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp) | |
29 | 2, 11, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ Grp) |
30 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
31 | 4, 30, 5 | frlmbasmap 20966 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝐹 ∈ 𝐵) → 𝐹 ∈ ((Base‘𝑅) ↑m 𝐼)) |
32 | 3, 21, 31 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑅) ↑m 𝐼)) |
33 | rlmbas 20465 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
34 | 13, 33 | pwsbas 17198 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ Grp ∧ 𝐼 ∈ 𝑊) → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
35 | 29, 3, 34 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((Base‘𝑅) ↑m 𝐼) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
36 | 32, 35 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
37 | 4, 30, 5 | frlmbasmap 20966 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ ((Base‘𝑅) ↑m 𝐼)) |
38 | 3, 22, 37 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ((Base‘𝑅) ↑m 𝐼)) |
39 | 38, 35 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) |
40 | eqid 2738 | . . . 4 ⊢ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼)) | |
41 | frlmsubval.a | . . . . 5 ⊢ − = (-g‘𝑅) | |
42 | rlmsub 20468 | . . . . 5 ⊢ (-g‘𝑅) = (-g‘(ringLMod‘𝑅)) | |
43 | 41, 42 | eqtri 2766 | . . . 4 ⊢ − = (-g‘(ringLMod‘𝑅)) |
44 | 13, 40, 43, 23 | pwssub 18689 | . . 3 ⊢ ((((ringLMod‘𝑅) ∈ Grp ∧ 𝐼 ∈ 𝑊) ∧ (𝐹 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)) ∧ 𝐺 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))) → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘f − 𝐺)) |
45 | 29, 3, 36, 39, 44 | syl22anc 836 | . 2 ⊢ (𝜑 → (𝐹(-g‘((ringLMod‘𝑅) ↑s 𝐼))𝐺) = (𝐹 ∘f − 𝐺)) |
46 | 10, 27, 45 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘f − 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ↑m cmap 8615 Basecbs 16912 ↾s cress 16941 ↑s cpws 17157 Grpcgrp 18577 -gcsg 18579 SubGrpcsubg 18749 Ringcrg 19783 LModclmod 20123 LSubSpclss 20193 ringLModcrglmod 20431 freeLMod cfrlm 20953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-prds 17158 df-pws 17160 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-dsmm 20939 df-frlm 20954 |
This theorem is referenced by: matsubgcell 21583 rrxds 24557 |
Copyright terms: Public domain | W3C validator |