MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallrisefac Structured version   Visualization version   GIF version

Theorem fallrisefac 14962
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
fallrisefac ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)))

Proof of Theorem fallrisefac
StepHypRef Expression
1 nn0cn 11504 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
212timesd 11477 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 6809 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 nn0z 11602 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 m1expeven 13114 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
64, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = 1)
7 neg1cn 11326 . . . . . . . 8 -1 ∈ ℂ
8 expadd 13109 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
97, 8mp3an1 1559 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
109anidms 548 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
113, 6, 103eqtr3rd 2814 . . . . 5 (𝑁 ∈ ℕ0 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
1211adantl 467 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
13 negneg 10533 . . . . . 6 (𝑋 ∈ ℂ → --𝑋 = 𝑋)
1413adantr 466 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → --𝑋 = 𝑋)
1514oveq1d 6808 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) = (𝑋 FallFac 𝑁))
1612, 15oveq12d 6811 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = (1 · (𝑋 FallFac 𝑁)))
17 expcl 13085 . . . . . 6 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
187, 17mpan 662 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ)
1918adantl 467 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
20 negcl 10483 . . . . . 6 (𝑋 ∈ ℂ → -𝑋 ∈ ℂ)
2120negcld 10581 . . . . 5 (𝑋 ∈ ℂ → --𝑋 ∈ ℂ)
22 fallfaccl 14953 . . . . 5 ((--𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ)
2321, 22sylan 561 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ)
2419, 19, 23mulassd 10265 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
25 fallfaccl 14953 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) ∈ ℂ)
2625mulid2d 10260 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝑋 FallFac 𝑁)) = (𝑋 FallFac 𝑁))
2716, 24, 263eqtr3rd 2814 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
28 risefallfac 14961 . . . 4 ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))
2920, 28sylan 561 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))
3029oveq2d 6809 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
3127, 30eqtr4d 2808 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  (class class class)co 6793  cc 10136  1c1 10139   + caddc 10141   · cmul 10143  -cneg 10469  2c2 11272  0cn0 11494  cz 11579  cexp 13067   FallFac cfallfac 14941   RiseFac crisefac 14942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-prod 14843  df-risefac 14943  df-fallfac 14944
This theorem is referenced by:  fallfac0  14965
  Copyright terms: Public domain W3C validator