![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fallrisefac | Structured version Visualization version GIF version |
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.) |
Ref | Expression |
---|---|
fallrisefac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12563 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1 | 2timesd 12536 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁)) |
3 | 2 | oveq2d 7464 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
4 | nn0z 12664 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
5 | m1expeven 14160 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = 1) |
7 | neg1cn 12407 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
8 | expadd 14155 | . . . . . . . 8 ⊢ ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
9 | 7, 8 | mp3an1 1448 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
10 | 9 | anidms 566 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
11 | 3, 6, 10 | 3eqtr3rd 2789 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
13 | negneg 11586 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → --𝑋 = 𝑋) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → --𝑋 = 𝑋) |
15 | 14 | oveq1d 7463 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) = (𝑋 FallFac 𝑁)) |
16 | 12, 15 | oveq12d 7466 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = (1 · (𝑋 FallFac 𝑁))) |
17 | expcl 14130 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ) | |
18 | 7, 17 | mpan 689 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ) |
20 | negcl 11536 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
21 | 20 | negcld 11634 | . . . . 5 ⊢ (𝑋 ∈ ℂ → --𝑋 ∈ ℂ) |
22 | fallfaccl 16064 | . . . . 5 ⊢ ((--𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ) | |
23 | 21, 22 | sylan 579 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ) |
24 | 19, 19, 23 | mulassd 11313 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
25 | fallfaccl 16064 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) ∈ ℂ) | |
26 | 25 | mullidd 11308 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝑋 FallFac 𝑁)) = (𝑋 FallFac 𝑁)) |
27 | 16, 24, 26 | 3eqtr3rd 2789 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
28 | risefallfac 16072 | . . . 4 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁))) | |
29 | 20, 28 | sylan 579 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁))) |
30 | 29 | oveq2d 7464 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
31 | 27, 30 | eqtr4d 2783 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 -cneg 11521 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ↑cexp 14112 FallFac cfallfac 16052 RiseFac crisefac 16053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-risefac 16054 df-fallfac 16055 |
This theorem is referenced by: fallfac0 16076 |
Copyright terms: Public domain | W3C validator |