![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fallrisefac | Structured version Visualization version GIF version |
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.) |
Ref | Expression |
---|---|
fallrisefac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12534 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1 | 2timesd 12507 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁)) |
3 | 2 | oveq2d 7447 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
4 | nn0z 12636 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
5 | m1expeven 14147 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = 1) |
7 | neg1cn 12378 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
8 | expadd 14142 | . . . . . . . 8 ⊢ ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
9 | 7, 8 | mp3an1 1447 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
10 | 9 | anidms 566 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
11 | 3, 6, 10 | 3eqtr3rd 2784 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
13 | negneg 11557 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → --𝑋 = 𝑋) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → --𝑋 = 𝑋) |
15 | 14 | oveq1d 7446 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) = (𝑋 FallFac 𝑁)) |
16 | 12, 15 | oveq12d 7449 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = (1 · (𝑋 FallFac 𝑁))) |
17 | expcl 14117 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ) | |
18 | 7, 17 | mpan 690 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ) |
20 | negcl 11506 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
21 | 20 | negcld 11605 | . . . . 5 ⊢ (𝑋 ∈ ℂ → --𝑋 ∈ ℂ) |
22 | fallfaccl 16049 | . . . . 5 ⊢ ((--𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ) | |
23 | 21, 22 | sylan 580 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ) |
24 | 19, 19, 23 | mulassd 11282 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
25 | fallfaccl 16049 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) ∈ ℂ) | |
26 | 25 | mullidd 11277 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝑋 FallFac 𝑁)) = (𝑋 FallFac 𝑁)) |
27 | 16, 24, 26 | 3eqtr3rd 2784 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
28 | risefallfac 16057 | . . . 4 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁))) | |
29 | 20, 28 | sylan 580 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁))) |
30 | 29 | oveq2d 7447 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
31 | 27, 30 | eqtr4d 2778 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 · cmul 11158 -cneg 11491 2c2 12319 ℕ0cn0 12524 ℤcz 12611 ↑cexp 14099 FallFac cfallfac 16037 RiseFac crisefac 16038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-prod 15937 df-risefac 16039 df-fallfac 16040 |
This theorem is referenced by: fallfac0 16061 |
Copyright terms: Public domain | W3C validator |