MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallrisefac Structured version   Visualization version   GIF version

Theorem fallrisefac 15375
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
fallrisefac ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)))

Proof of Theorem fallrisefac
StepHypRef Expression
1 nn0cn 11900 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
212timesd 11873 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 7161 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 nn0z 11998 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 m1expeven 13477 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
64, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = 1)
7 neg1cn 11744 . . . . . . . 8 -1 ∈ ℂ
8 expadd 13472 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
97, 8mp3an1 1445 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
109anidms 570 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
113, 6, 103eqtr3rd 2868 . . . . 5 (𝑁 ∈ ℕ0 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
1211adantl 485 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
13 negneg 10928 . . . . . 6 (𝑋 ∈ ℂ → --𝑋 = 𝑋)
1413adantr 484 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → --𝑋 = 𝑋)
1514oveq1d 7160 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) = (𝑋 FallFac 𝑁))
1612, 15oveq12d 7163 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = (1 · (𝑋 FallFac 𝑁)))
17 expcl 13448 . . . . . 6 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
187, 17mpan 689 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ)
1918adantl 485 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
20 negcl 10878 . . . . . 6 (𝑋 ∈ ℂ → -𝑋 ∈ ℂ)
2120negcld 10976 . . . . 5 (𝑋 ∈ ℂ → --𝑋 ∈ ℂ)
22 fallfaccl 15366 . . . . 5 ((--𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ)
2321, 22sylan 583 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ)
2419, 19, 23mulassd 10656 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
25 fallfaccl 15366 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) ∈ ℂ)
2625mulid2d 10651 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝑋 FallFac 𝑁)) = (𝑋 FallFac 𝑁))
2716, 24, 263eqtr3rd 2868 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
28 risefallfac 15374 . . . 4 ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))
2920, 28sylan 583 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))
3029oveq2d 7161 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
3127, 30eqtr4d 2862 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  (class class class)co 7145  cc 10527  1c1 10530   + caddc 10532   · cmul 10534  -cneg 10863  2c2 11685  0cn0 11890  cz 11974  cexp 13430   FallFac cfallfac 15354   RiseFac crisefac 15355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-oi 8965  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-fz 12891  df-fzo 13034  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-prod 15256  df-risefac 15356  df-fallfac 15357
This theorem is referenced by:  fallfac0  15378
  Copyright terms: Public domain W3C validator