| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fallrisefac | Structured version Visualization version GIF version | ||
| Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| fallrisefac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn 12516 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 2 | 1 | 2timesd 12489 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 3 | 2 | oveq2d 7426 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
| 4 | nn0z 12618 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 5 | m1expeven 14132 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = 1) |
| 7 | neg1cn 12359 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
| 8 | expadd 14127 | . . . . . . . 8 ⊢ ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
| 9 | 7, 8 | mp3an1 1450 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 10 | 9 | anidms 566 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 11 | 3, 6, 10 | 3eqtr3rd 2780 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 13 | negneg 11538 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → --𝑋 = 𝑋) | |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → --𝑋 = 𝑋) |
| 15 | 14 | oveq1d 7425 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) = (𝑋 FallFac 𝑁)) |
| 16 | 12, 15 | oveq12d 7428 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = (1 · (𝑋 FallFac 𝑁))) |
| 17 | expcl 14102 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ) | |
| 18 | 7, 17 | mpan 690 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ) |
| 20 | negcl 11487 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
| 21 | 20 | negcld 11586 | . . . . 5 ⊢ (𝑋 ∈ ℂ → --𝑋 ∈ ℂ) |
| 22 | fallfaccl 16037 | . . . . 5 ⊢ ((--𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ) | |
| 23 | 21, 22 | sylan 580 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ) |
| 24 | 19, 19, 23 | mulassd 11263 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
| 25 | fallfaccl 16037 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) ∈ ℂ) | |
| 26 | 25 | mullidd 11258 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝑋 FallFac 𝑁)) = (𝑋 FallFac 𝑁)) |
| 27 | 16, 24, 26 | 3eqtr3rd 2780 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
| 28 | risefallfac 16045 | . . . 4 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁))) | |
| 29 | 20, 28 | sylan 580 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁))) |
| 30 | 29 | oveq2d 7426 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))) |
| 31 | 27, 30 | eqtr4d 2774 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 -cneg 11472 2c2 12300 ℕ0cn0 12506 ℤcz 12593 ↑cexp 14084 FallFac cfallfac 16025 RiseFac crisefac 16026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-prod 15925 df-risefac 16027 df-fallfac 16028 |
| This theorem is referenced by: fallfac0 16049 |
| Copyright terms: Public domain | W3C validator |