| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > m1modne | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is not itself minus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| m1modne | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12853 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13626 | . . . . . 6 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℤ) | |
| 4 | 1zzd 12570 | . . . . . . 7 ⊢ (𝐴 ∈ (0..^𝑁) → 1 ∈ ℤ) | |
| 5 | 3, 4 | zsubcld 12649 | . . . . . 6 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 − 1) ∈ ℤ) |
| 6 | 3, 5 | jca 511 | . . . . 5 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ)) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ)) |
| 8 | 3 | zcnd 12645 | . . . . . . 7 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℂ) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ) |
| 10 | 1cnd 11175 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 1 ∈ ℂ) | |
| 11 | 9, 10 | nncand 11544 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 − (𝐴 − 1)) = 1) |
| 12 | 1le1 11812 | . . . . . . 7 ⊢ 1 ≤ 1 | |
| 13 | breq2 5113 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 − 1)) = 1 → (1 ≤ (𝐴 − (𝐴 − 1)) ↔ 1 ≤ 1)) | |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → (1 ≤ (𝐴 − (𝐴 − 1)) ↔ 1 ≤ 1)) |
| 15 | 12, 14 | mpbiri 258 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → 1 ≤ (𝐴 − (𝐴 − 1))) |
| 16 | eluz2gt1 12885 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 1 < 𝑁) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → 1 < 𝑁) |
| 19 | breq1 5112 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 − 1)) = 1 → ((𝐴 − (𝐴 − 1)) < 𝑁 ↔ 1 < 𝑁)) | |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → ((𝐴 − (𝐴 − 1)) < 𝑁 ↔ 1 < 𝑁)) |
| 21 | 18, 20 | mpbird 257 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → (𝐴 − (𝐴 − 1)) < 𝑁) |
| 22 | 15, 21 | jca 511 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → (1 ≤ (𝐴 − (𝐴 − 1)) ∧ (𝐴 − (𝐴 − 1)) < 𝑁)) |
| 23 | 11, 22 | mpdan 687 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (1 ≤ (𝐴 − (𝐴 − 1)) ∧ (𝐴 − (𝐴 − 1)) < 𝑁)) |
| 24 | difltmodne 47333 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (1 ≤ (𝐴 − (𝐴 − 1)) ∧ (𝐴 − (𝐴 − 1)) < 𝑁)) → (𝐴 mod 𝑁) ≠ ((𝐴 − 1) mod 𝑁)) | |
| 25 | 2, 7, 23, 24 | syl3anc 1373 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 mod 𝑁) ≠ ((𝐴 − 1) mod 𝑁)) |
| 26 | 25 | necomd 2981 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ (𝐴 mod 𝑁)) |
| 27 | zmodidfzoimp 13869 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 mod 𝑁) = 𝐴) | |
| 28 | 27 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 mod 𝑁) = 𝐴) |
| 29 | 26, 28 | neeqtrd 2995 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 1c1 11075 < clt 11214 ≤ cle 11215 − cmin 11411 ℕcn 12187 2c2 12242 ℤcz 12535 ℤ≥cuz 12799 ..^cfzo 13621 mod cmo 13837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-dvds 16229 |
| This theorem is referenced by: gpg5nbgrvtx03starlem3 48051 |
| Copyright terms: Public domain | W3C validator |