| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > m1modne | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is not itself minus 1 modulo an integer greater than 1 and the nonnegative integer. (Contributed by AV, 6-Sep-2025.) |
| Ref | Expression |
|---|---|
| m1modne | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12920 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
| 3 | elfzoelz 13695 | . . . . . 6 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℤ) | |
| 4 | 1zzd 12644 | . . . . . . 7 ⊢ (𝐴 ∈ (0..^𝑁) → 1 ∈ ℤ) | |
| 5 | 3, 4 | zsubcld 12723 | . . . . . 6 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 − 1) ∈ ℤ) |
| 6 | 3, 5 | jca 511 | . . . . 5 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ)) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ)) |
| 8 | 3 | zcnd 12719 | . . . . . . 7 ⊢ (𝐴 ∈ (0..^𝑁) → 𝐴 ∈ ℂ) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 𝐴 ∈ ℂ) |
| 10 | 1cnd 11252 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 1 ∈ ℂ) | |
| 11 | 9, 10 | nncand 11621 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 − (𝐴 − 1)) = 1) |
| 12 | 1le1 11887 | . . . . . . 7 ⊢ 1 ≤ 1 | |
| 13 | breq2 5145 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 − 1)) = 1 → (1 ≤ (𝐴 − (𝐴 − 1)) ↔ 1 ≤ 1)) | |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → (1 ≤ (𝐴 − (𝐴 − 1)) ↔ 1 ≤ 1)) |
| 15 | 12, 14 | mpbiri 258 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → 1 ≤ (𝐴 − (𝐴 − 1))) |
| 16 | eluz2gt1 12958 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → 1 < 𝑁) |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → 1 < 𝑁) |
| 19 | breq1 5144 | . . . . . . . 8 ⊢ ((𝐴 − (𝐴 − 1)) = 1 → ((𝐴 − (𝐴 − 1)) < 𝑁 ↔ 1 < 𝑁)) | |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → ((𝐴 − (𝐴 − 1)) < 𝑁 ↔ 1 < 𝑁)) |
| 21 | 18, 20 | mpbird 257 | . . . . . 6 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → (𝐴 − (𝐴 − 1)) < 𝑁) |
| 22 | 15, 21 | jca 511 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) ∧ (𝐴 − (𝐴 − 1)) = 1) → (1 ≤ (𝐴 − (𝐴 − 1)) ∧ (𝐴 − (𝐴 − 1)) < 𝑁)) |
| 23 | 11, 22 | mpdan 687 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (1 ≤ (𝐴 − (𝐴 − 1)) ∧ (𝐴 − (𝐴 − 1)) < 𝑁)) |
| 24 | difltmodne 47317 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 − 1) ∈ ℤ) ∧ (1 ≤ (𝐴 − (𝐴 − 1)) ∧ (𝐴 − (𝐴 − 1)) < 𝑁)) → (𝐴 mod 𝑁) ≠ ((𝐴 − 1) mod 𝑁)) | |
| 25 | 2, 7, 23, 24 | syl3anc 1373 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 mod 𝑁) ≠ ((𝐴 − 1) mod 𝑁)) |
| 26 | 25 | necomd 2995 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ (𝐴 mod 𝑁)) |
| 27 | zmodidfzoimp 13937 | . . 3 ⊢ (𝐴 ∈ (0..^𝑁) → (𝐴 mod 𝑁) = 𝐴) | |
| 28 | 27 | adantl 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → (𝐴 mod 𝑁) = 𝐴) |
| 29 | 26, 28 | neeqtrd 3009 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ (0..^𝑁)) → ((𝐴 − 1) mod 𝑁) ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 ℂcc 11149 0cc0 11151 1c1 11152 < clt 11291 ≤ cle 11292 − cmin 11488 ℕcn 12262 2c2 12317 ℤcz 12609 ℤ≥cuz 12874 ..^cfzo 13690 mod cmo 13905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 ax-pre-sup 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-sup 9478 df-inf 9479 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-div 11917 df-nn 12263 df-2 12325 df-n0 12523 df-z 12610 df-uz 12875 df-rp 13031 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-dvds 16287 |
| This theorem is referenced by: gpg5nbgrvtx03starlem3 47999 |
| Copyright terms: Public domain | W3C validator |