| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minusmod5ne | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is not itself minus a positive integer less than 5 modulo 5. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| minusmod5ne | ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 12222 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → 5 ∈ ℕ) |
| 3 | elfzoelz 13566 | . . . . 5 ⊢ (𝐴 ∈ (0..^5) → 𝐴 ∈ ℤ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → 𝐴 ∈ ℤ) |
| 5 | elfzoelz 13566 | . . . . . 6 ⊢ (𝐾 ∈ (1..^5) → 𝐾 ∈ ℤ) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → 𝐾 ∈ ℤ) |
| 7 | 4, 6 | zsubcld 12592 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 − 𝐾) ∈ ℤ) |
| 8 | 3 | zcnd 12588 | . . . . . 6 ⊢ (𝐴 ∈ (0..^5) → 𝐴 ∈ ℂ) |
| 9 | 5 | zcnd 12588 | . . . . . 6 ⊢ (𝐾 ∈ (1..^5) → 𝐾 ∈ ℂ) |
| 10 | nncan 11401 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 − (𝐴 − 𝐾)) = 𝐾) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 − (𝐴 − 𝐾)) = 𝐾) |
| 12 | elfzo1 13619 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^5) ↔ (𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5)) | |
| 13 | nnge1 12164 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
| 14 | 13 | anim1i 615 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℕ ∧ 𝐾 < 5) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 15 | 14 | 3adant2 1131 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 16 | 12, 15 | sylbi 217 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^5) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 18 | breq2 5099 | . . . . . . 7 ⊢ ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → (1 ≤ (𝐴 − (𝐴 − 𝐾)) ↔ 1 ≤ 𝐾)) | |
| 19 | breq1 5098 | . . . . . . 7 ⊢ ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → ((𝐴 − (𝐴 − 𝐾)) < 5 ↔ 𝐾 < 5)) | |
| 20 | 18, 19 | anbi12d 632 | . . . . . 6 ⊢ ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → ((1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5) ↔ (1 ≤ 𝐾 ∧ 𝐾 < 5))) |
| 21 | 17, 20 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → (1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5))) |
| 22 | 11, 21 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5)) |
| 23 | difltmodne 47504 | . . . 4 ⊢ ((5 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 − 𝐾) ∈ ℤ) ∧ (1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5)) → (𝐴 mod 5) ≠ ((𝐴 − 𝐾) mod 5)) | |
| 24 | 2, 4, 7, 22, 23 | syl121anc 1377 | . . 3 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 mod 5) ≠ ((𝐴 − 𝐾) mod 5)) |
| 25 | 24 | necomd 2984 | . 2 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ (𝐴 mod 5)) |
| 26 | zmodidfzoimp 13812 | . . 3 ⊢ (𝐴 ∈ (0..^5) → (𝐴 mod 5) = 𝐴) | |
| 27 | 26 | adantr 480 | . 2 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 mod 5) = 𝐴) |
| 28 | 25, 27 | neeqtrd 2998 | 1 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 < clt 11157 ≤ cle 11158 − cmin 11355 ℕcn 12136 5c5 12194 ℤcz 12479 ..^cfzo 13561 mod cmo 13780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-dvds 16171 |
| This theorem is referenced by: gpg5nbgrvtx13starlem3 48235 |
| Copyright terms: Public domain | W3C validator |