| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minusmod5ne | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is not itself minus a positive integer less than 5 modulo 5. (Contributed by AV, 7-Sep-2025.) |
| Ref | Expression |
|---|---|
| minusmod5ne | ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 12206 | . . . . 5 ⊢ 5 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → 5 ∈ ℕ) |
| 3 | elfzoelz 13554 | . . . . 5 ⊢ (𝐴 ∈ (0..^5) → 𝐴 ∈ ℤ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → 𝐴 ∈ ℤ) |
| 5 | elfzoelz 13554 | . . . . . 6 ⊢ (𝐾 ∈ (1..^5) → 𝐾 ∈ ℤ) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → 𝐾 ∈ ℤ) |
| 7 | 4, 6 | zsubcld 12577 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 − 𝐾) ∈ ℤ) |
| 8 | 3 | zcnd 12573 | . . . . . 6 ⊢ (𝐴 ∈ (0..^5) → 𝐴 ∈ ℂ) |
| 9 | 5 | zcnd 12573 | . . . . . 6 ⊢ (𝐾 ∈ (1..^5) → 𝐾 ∈ ℂ) |
| 10 | nncan 11385 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 − (𝐴 − 𝐾)) = 𝐾) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 − (𝐴 − 𝐾)) = 𝐾) |
| 12 | elfzo1 13607 | . . . . . . . 8 ⊢ (𝐾 ∈ (1..^5) ↔ (𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5)) | |
| 13 | nnge1 12148 | . . . . . . . . . 10 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
| 14 | 13 | anim1i 615 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℕ ∧ 𝐾 < 5) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 15 | 14 | 3adant2 1131 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ ∧ 5 ∈ ℕ ∧ 𝐾 < 5) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 16 | 12, 15 | sylbi 217 | . . . . . . 7 ⊢ (𝐾 ∈ (1..^5) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (1 ≤ 𝐾 ∧ 𝐾 < 5)) |
| 18 | breq2 5090 | . . . . . . 7 ⊢ ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → (1 ≤ (𝐴 − (𝐴 − 𝐾)) ↔ 1 ≤ 𝐾)) | |
| 19 | breq1 5089 | . . . . . . 7 ⊢ ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → ((𝐴 − (𝐴 − 𝐾)) < 5 ↔ 𝐾 < 5)) | |
| 20 | 18, 19 | anbi12d 632 | . . . . . 6 ⊢ ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → ((1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5) ↔ (1 ≤ 𝐾 ∧ 𝐾 < 5))) |
| 21 | 17, 20 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − (𝐴 − 𝐾)) = 𝐾 → (1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5))) |
| 22 | 11, 21 | mpd 15 | . . . 4 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5)) |
| 23 | difltmodne 47373 | . . . 4 ⊢ ((5 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ (𝐴 − 𝐾) ∈ ℤ) ∧ (1 ≤ (𝐴 − (𝐴 − 𝐾)) ∧ (𝐴 − (𝐴 − 𝐾)) < 5)) → (𝐴 mod 5) ≠ ((𝐴 − 𝐾) mod 5)) | |
| 24 | 2, 4, 7, 22, 23 | syl121anc 1377 | . . 3 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 mod 5) ≠ ((𝐴 − 𝐾) mod 5)) |
| 25 | 24 | necomd 2983 | . 2 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ (𝐴 mod 5)) |
| 26 | zmodidfzoimp 13800 | . . 3 ⊢ (𝐴 ∈ (0..^5) → (𝐴 mod 5) = 𝐴) | |
| 27 | 26 | adantr 480 | . 2 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → (𝐴 mod 5) = 𝐴) |
| 28 | 25, 27 | neeqtrd 2997 | 1 ⊢ ((𝐴 ∈ (0..^5) ∧ 𝐾 ∈ (1..^5)) → ((𝐴 − 𝐾) mod 5) ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5086 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 < clt 11141 ≤ cle 11142 − cmin 11339 ℕcn 12120 5c5 12178 ℤcz 12463 ..^cfzo 13549 mod cmo 13768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-dvds 16159 |
| This theorem is referenced by: gpg5nbgrvtx13starlem3 48104 |
| Copyright terms: Public domain | W3C validator |