![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcid | Structured version Visualization version GIF version |
Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtccat.c | β’ (π β πΆ = (MndToCatβπ)) |
mndtccat.m | β’ (π β π β Mnd) |
mndtcid.b | β’ (π β π΅ = (BaseβπΆ)) |
mndtcid.x | β’ (π β π β π΅) |
mndtcid.i | β’ (π β 1 = (IdβπΆ)) |
Ref | Expression |
---|---|
mndtcid | β’ (π β ( 1 βπ) = (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcid.i | . . 3 β’ (π β 1 = (IdβπΆ)) | |
2 | mndtccat.c | . . . . 5 β’ (π β πΆ = (MndToCatβπ)) | |
3 | mndtccat.m | . . . . 5 β’ (π β π β Mnd) | |
4 | 2, 3 | mndtccatid 47199 | . . . 4 β’ (π β (πΆ β Cat β§ (IdβπΆ) = (π₯ β (BaseβπΆ) β¦ (0gβπ)))) |
5 | 4 | simprd 497 | . . 3 β’ (π β (IdβπΆ) = (π₯ β (BaseβπΆ) β¦ (0gβπ))) |
6 | 1, 5 | eqtrd 2773 | . 2 β’ (π β 1 = (π₯ β (BaseβπΆ) β¦ (0gβπ))) |
7 | eqidd 2734 | . 2 β’ ((π β§ π₯ = π) β (0gβπ) = (0gβπ)) | |
8 | mndtcid.x | . . 3 β’ (π β π β π΅) | |
9 | mndtcid.b | . . 3 β’ (π β π΅ = (BaseβπΆ)) | |
10 | 8, 9 | eleqtrd 2836 | . 2 β’ (π β π β (BaseβπΆ)) |
11 | fvexd 6858 | . 2 β’ (π β (0gβπ) β V) | |
12 | 6, 7, 10, 11 | fvmptd 6956 | 1 β’ (π β ( 1 βπ) = (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3444 β¦ cmpt 5189 βcfv 6497 Basecbs 17088 0gc0g 17326 Catccat 17549 Idccid 17550 Mndcmnd 18561 MndToCatcmndtc 47189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-ot 4596 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-slot 17059 df-ndx 17071 df-base 17089 df-hom 17162 df-cco 17163 df-0g 17328 df-cat 17553 df-cid 17554 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-mndtc 47190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |