![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcid | Structured version Visualization version GIF version |
Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtccat.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtccat.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
mndtcid.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
mndtcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mndtcid.i | ⊢ (𝜑 → 1 = (Id‘𝐶)) |
Ref | Expression |
---|---|
mndtcid | ⊢ (𝜑 → ( 1 ‘𝑋) = (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcid.i | . . 3 ⊢ (𝜑 → 1 = (Id‘𝐶)) | |
2 | mndtccat.c | . . . . 5 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
3 | mndtccat.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
4 | 2, 3 | mndtccatid 48285 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) |
5 | 4 | simprd 494 | . . 3 ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ (Base‘𝐶) ↦ (0g‘𝑀))) |
6 | 1, 5 | eqtrd 2765 | . 2 ⊢ (𝜑 → 1 = (𝑥 ∈ (Base‘𝐶) ↦ (0g‘𝑀))) |
7 | eqidd 2726 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (0g‘𝑀) = (0g‘𝑀)) | |
8 | mndtcid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | mndtcid.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | |
10 | 8, 9 | eleqtrd 2827 | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
11 | fvexd 6911 | . 2 ⊢ (𝜑 → (0g‘𝑀) ∈ V) | |
12 | 6, 7, 10, 11 | fvmptd 7011 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ↦ cmpt 5232 ‘cfv 6549 Basecbs 17183 0gc0g 17424 Catccat 17647 Idccid 17648 Mndcmnd 18697 MndToCatcmndtc 48275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-hom 17260 df-cco 17261 df-0g 17426 df-cat 17651 df-cid 17652 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mndtc 48276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |