![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtcid | Structured version Visualization version GIF version |
Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtccat.c | β’ (π β πΆ = (MndToCatβπ)) |
mndtccat.m | β’ (π β π β Mnd) |
mndtcid.b | β’ (π β π΅ = (BaseβπΆ)) |
mndtcid.x | β’ (π β π β π΅) |
mndtcid.i | β’ (π β 1 = (IdβπΆ)) |
Ref | Expression |
---|---|
mndtcid | β’ (π β ( 1 βπ) = (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcid.i | . . 3 β’ (π β 1 = (IdβπΆ)) | |
2 | mndtccat.c | . . . . 5 β’ (π β πΆ = (MndToCatβπ)) | |
3 | mndtccat.m | . . . . 5 β’ (π β π β Mnd) | |
4 | 2, 3 | mndtccatid 48150 | . . . 4 β’ (π β (πΆ β Cat β§ (IdβπΆ) = (π₯ β (BaseβπΆ) β¦ (0gβπ)))) |
5 | 4 | simprd 494 | . . 3 β’ (π β (IdβπΆ) = (π₯ β (BaseβπΆ) β¦ (0gβπ))) |
6 | 1, 5 | eqtrd 2767 | . 2 β’ (π β 1 = (π₯ β (BaseβπΆ) β¦ (0gβπ))) |
7 | eqidd 2728 | . 2 β’ ((π β§ π₯ = π) β (0gβπ) = (0gβπ)) | |
8 | mndtcid.x | . . 3 β’ (π β π β π΅) | |
9 | mndtcid.b | . . 3 β’ (π β π΅ = (BaseβπΆ)) | |
10 | 8, 9 | eleqtrd 2830 | . 2 β’ (π β π β (BaseβπΆ)) |
11 | fvexd 6915 | . 2 β’ (π β (0gβπ) β V) | |
12 | 6, 7, 10, 11 | fvmptd 7015 | 1 β’ (π β ( 1 βπ) = (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3471 β¦ cmpt 5233 βcfv 6551 Basecbs 17185 0gc0g 17426 Catccat 17649 Idccid 17650 Mndcmnd 18699 MndToCatcmndtc 48140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-fz 13523 df-struct 17121 df-slot 17156 df-ndx 17168 df-base 17186 df-hom 17262 df-cco 17263 df-0g 17428 df-cat 17653 df-cid 17654 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mndtc 48141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |