Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndtccat | Structured version Visualization version GIF version |
Description: The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024.) |
Ref | Expression |
---|---|
mndtccat.c | ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) |
mndtccat.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
Ref | Expression |
---|---|
mndtccat | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtccat.c | . . 3 ⊢ (𝜑 → 𝐶 = (MndToCat‘𝑀)) | |
2 | mndtccat.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
3 | 1, 2 | mndtccatid 45874 | . 2 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ (Base‘𝐶) ↦ (0g‘𝑀)))) |
4 | 3 | simpld 498 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ↦ cmpt 5120 ‘cfv 6349 Basecbs 16598 0gc0g 16828 Catccat 17050 Idccid 17051 Mndcmnd 18039 MndToCatcmndtc 45865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-ot 4535 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 df-n0 11989 df-z 12075 df-dec 12192 df-uz 12337 df-fz 12994 df-struct 16600 df-ndx 16601 df-slot 16602 df-base 16604 df-hom 16704 df-cco 16705 df-0g 16830 df-cat 17054 df-cid 17055 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-mndtc 45866 |
This theorem is referenced by: grptcmon 45877 grptcepi 45878 |
Copyright terms: Public domain | W3C validator |