Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sin0 | Structured version Visualization version GIF version |
Description: Value of the sine function at 0. (Contributed by Steve Rodriguez, 14-Mar-2005.) |
Ref | Expression |
---|---|
sin0 | ⊢ (sin‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg0 11377 | . . . 4 ⊢ -0 = 0 | |
2 | 1 | fveq2i 6837 | . . 3 ⊢ (sin‘-0) = (sin‘0) |
3 | 0cn 11077 | . . . 4 ⊢ 0 ∈ ℂ | |
4 | sinneg 15959 | . . . 4 ⊢ (0 ∈ ℂ → (sin‘-0) = -(sin‘0)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (sin‘-0) = -(sin‘0) |
6 | 2, 5 | eqtr3i 2767 | . 2 ⊢ (sin‘0) = -(sin‘0) |
7 | sincl 15939 | . . . 4 ⊢ (0 ∈ ℂ → (sin‘0) ∈ ℂ) | |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ (sin‘0) ∈ ℂ |
9 | 8 | eqnegi 11814 | . 2 ⊢ ((sin‘0) = -(sin‘0) ↔ (sin‘0) = 0) |
10 | 6, 9 | mpbi 229 | 1 ⊢ (sin‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ‘cfv 6488 ℂcc 10979 0cc0 10981 -cneg 11316 sincsin 15877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-inf2 9507 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 ax-pre-sup 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-int 4903 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-se 5583 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-er 8578 df-pm 8698 df-en 8814 df-dom 8815 df-sdom 8816 df-fin 8817 df-sup 9308 df-inf 9309 df-oi 9376 df-card 9805 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-div 11743 df-nn 12084 df-2 12146 df-3 12147 df-n0 12344 df-z 12430 df-uz 12693 df-rp 12841 df-ico 13195 df-fz 13350 df-fzo 13493 df-fl 13622 df-seq 13832 df-exp 13893 df-fac 14098 df-hash 14155 df-shft 14882 df-cj 14914 df-re 14915 df-im 14916 df-sqrt 15050 df-abs 15051 df-limsup 15284 df-clim 15301 df-rlim 15302 df-sum 15502 df-ef 15881 df-sin 15883 |
This theorem is referenced by: tan0 15964 demoivreALT 16014 sin2kpi 25750 sinq12ge0 25775 sinkpi 25788 itgsinexplem1 43883 dirkertrigeqlem2 44028 fourierdlem62 44097 fourierdlem103 44138 fourierdlem104 44139 sqwvfoura 44157 |
Copyright terms: Public domain | W3C validator |