MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsneg1 Structured version   Visualization version   GIF version

Theorem lgsneg1 25460
Description: The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsneg1 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))

Proof of Theorem lgsneg1
StepHypRef Expression
1 neg0 10648 . . . 4 -0 = 0
2 simpr 479 . . . . 5 (((𝐴 ∈ ℕ0𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0)
32negeqd 10595 . . . 4 (((𝐴 ∈ ℕ0𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = -0)
41, 3, 23eqtr4a 2887 . . 3 (((𝐴 ∈ ℕ0𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = 𝑁)
54oveq2d 6921 . 2 (((𝐴 ∈ ℕ0𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))
6 nn0z 11728 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
7 lgsneg 25459 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))
86, 7syl3an1 1206 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)))
9 nn0nlt0 11646 . . . . . . 7 (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0)
1093ad2ant1 1167 . . . . . 6 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ¬ 𝐴 < 0)
1110iffalsed 4317 . . . . 5 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) = 1)
1211oveq1d 6920 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (1 · (𝐴 /L 𝑁)))
1363ad2ant1 1167 . . . . . . 7 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
14 simp2 1171 . . . . . . 7 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
15 lgscl 25449 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ)
1613, 14, 15syl2anc 579 . . . . . 6 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℤ)
1716zcnd 11811 . . . . 5 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℂ)
1817mulid2d 10375 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (1 · (𝐴 /L 𝑁)) = (𝐴 /L 𝑁))
198, 12, 183eqtrd 2865 . . 3 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))
20193expa 1151 . 2 (((𝐴 ∈ ℕ0𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))
215, 20pm2.61dane 3086 1 ((𝐴 ∈ ℕ0𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  ifcif 4306   class class class wbr 4873  (class class class)co 6905  0cc0 10252  1c1 10253   · cmul 10257   < clt 10391  -cneg 10586  0cn0 11618  cz 11704   /L clgs 25432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-xnn0 11691  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-dvds 15358  df-gcd 15590  df-prm 15758  df-phi 15842  df-pc 15913  df-lgs 25433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator