MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem6 Structured version   Visualization version   GIF version

Theorem basellem6 26996
Description: Lemma for basel 27000. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
basellem6 𝐺 ⇝ 0

Proof of Theorem basellem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12836 . . 3 ℕ = (ℤ‘1)
2 1zzd 12564 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11126 . . . 4 1 ∈ ℂ
4 divcnv 15819 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 basel.g . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
7 nnex 12192 . . . . . 6 ℕ ∈ V
87mptex 7197 . . . . 5 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
96, 8eqeltri 2824 . . . 4 𝐺 ∈ V
109a1i 11 . . 3 (⊤ → 𝐺 ∈ V)
11 oveq2 7395 . . . . . 6 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
12 eqid 2729 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 7420 . . . . . 6 (1 / 𝑘) ∈ V
1411, 12, 13fvmpt 6968 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
1514adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
16 nnrecre 12228 . . . . 5 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1716adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
1815, 17eqeltrd 2828 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
19 oveq2 7395 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019oveq1d 7402 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2120oveq2d 7403 . . . . . 6 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
22 ovex 7420 . . . . . 6 (1 / ((2 · 𝑘) + 1)) ∈ V
2321, 6, 22fvmpt 6968 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
2423adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
25 2nn 12259 . . . . . . . 8 2 ∈ ℕ
2625a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℕ)
27 nnmulcl 12210 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2826, 27sylan 580 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2928peano2nnd 12203 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
3029nnrecred 12237 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
3124, 30eqeltrd 2828 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
32 nnre 12193 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3332adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
3428nnred 12201 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
3529nnred 12201 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
36 nnnn0 12449 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3736adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
38 nn0addge1 12488 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
3933, 37, 38syl2anc 584 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
4033recnd 11202 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
41402timesd 12425 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
4239, 41breqtrrd 5135 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
4334lep1d 12114 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
4433, 34, 35, 42, 43letrd 11331 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
45 nngt0 12217 . . . . . . 7 (𝑘 ∈ ℕ → 0 < 𝑘)
4645adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
4729nngt0d 12235 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
48 lerec 12066 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
4933, 46, 35, 47, 48syl22anc 838 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
5044, 49mpbid 232 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5150, 24, 153brtr4d 5139 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
5229nnrpd 12993 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
5352rpreccld 13005 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
5453rpge0d 12999 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5554, 24breqtrrd 5135 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
561, 2, 5, 10, 18, 31, 51, 55climsqz2 15608 . 2 (⊤ → 𝐺 ⇝ 0)
5756mptru 1547 1 𝐺 ⇝ 0
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3447   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455
This theorem is referenced by:  basellem7  26997  basellem9  26999
  Copyright terms: Public domain W3C validator