MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem6 Structured version   Visualization version   GIF version

Theorem basellem6 26216
Description: Lemma for basel 26220. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
basellem6 𝐺 ⇝ 0

Proof of Theorem basellem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12603 . . 3 ℕ = (ℤ‘1)
2 1zzd 12334 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 10913 . . . 4 1 ∈ ℂ
4 divcnv 15546 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 basel.g . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
7 nnex 11962 . . . . . 6 ℕ ∈ V
87mptex 7093 . . . . 5 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
96, 8eqeltri 2836 . . . 4 𝐺 ∈ V
109a1i 11 . . 3 (⊤ → 𝐺 ∈ V)
11 oveq2 7276 . . . . . 6 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
12 eqid 2739 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 7301 . . . . . 6 (1 / 𝑘) ∈ V
1411, 12, 13fvmpt 6869 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
1514adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
16 nnrecre 11998 . . . . 5 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1716adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
1815, 17eqeltrd 2840 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
19 oveq2 7276 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019oveq1d 7283 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2120oveq2d 7284 . . . . . 6 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
22 ovex 7301 . . . . . 6 (1 / ((2 · 𝑘) + 1)) ∈ V
2321, 6, 22fvmpt 6869 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
2423adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
25 2nn 12029 . . . . . . . 8 2 ∈ ℕ
2625a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℕ)
27 nnmulcl 11980 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2826, 27sylan 579 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2928peano2nnd 11973 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
3029nnrecred 12007 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
3124, 30eqeltrd 2840 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
32 nnre 11963 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3332adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
3428nnred 11971 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
3529nnred 11971 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
36 nnnn0 12223 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3736adantl 481 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
38 nn0addge1 12262 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
3933, 37, 38syl2anc 583 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
4033recnd 10987 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
41402timesd 12199 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
4239, 41breqtrrd 5106 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
4334lep1d 11889 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
4433, 34, 35, 42, 43letrd 11115 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
45 nngt0 11987 . . . . . . 7 (𝑘 ∈ ℕ → 0 < 𝑘)
4645adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
4729nngt0d 12005 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
48 lerec 11841 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
4933, 46, 35, 47, 48syl22anc 835 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
5044, 49mpbid 231 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5150, 24, 153brtr4d 5110 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
5229nnrpd 12752 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
5352rpreccld 12764 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
5453rpge0d 12758 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5554, 24breqtrrd 5106 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
561, 2, 5, 10, 18, 31, 51, 55climsqz2 15332 . 2 (⊤ → 𝐺 ⇝ 0)
5756mptru 1548 1 𝐺 ⇝ 0
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wtru 1542  wcel 2109  Vcvv 3430   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860   < clt 10993  cle 10994   / cdiv 11615  cn 11956  2c2 12011  0cn0 12216  cli 15174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fl 13493  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-rlim 15179
This theorem is referenced by:  basellem7  26217  basellem9  26219
  Copyright terms: Public domain W3C validator