Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem6 Structured version   Visualization version   GIF version

Theorem basellem6 25680
 Description: Lemma for basel 25684. The function 𝐺 goes to zero because it is bounded by 1 / 𝑛. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
basellem6 𝐺 ⇝ 0

Proof of Theorem basellem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12280 . . 3 ℕ = (ℤ‘1)
2 1zzd 12012 . . 3 (⊤ → 1 ∈ ℤ)
3 ax-1cn 10595 . . . 4 1 ∈ ℂ
4 divcnv 15210 . . . 4 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4mp1i 13 . . 3 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 basel.g . . . . 5 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
7 nnex 11642 . . . . . 6 ℕ ∈ V
87mptex 6979 . . . . 5 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
96, 8eqeltri 2912 . . . 4 𝐺 ∈ V
109a1i 11 . . 3 (⊤ → 𝐺 ∈ V)
11 oveq2 7159 . . . . . 6 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
12 eqid 2824 . . . . . 6 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
13 ovex 7184 . . . . . 6 (1 / 𝑘) ∈ V
1411, 12, 13fvmpt 6761 . . . . 5 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
1514adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘))
16 nnrecre 11678 . . . . 5 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
1716adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
1815, 17eqeltrd 2916 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ)
19 oveq2 7159 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019oveq1d 7166 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2120oveq2d 7167 . . . . . 6 (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
22 ovex 7184 . . . . . 6 (1 / ((2 · 𝑘) + 1)) ∈ V
2321, 6, 22fvmpt 6761 . . . . 5 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
2423adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
25 2nn 11709 . . . . . . . 8 2 ∈ ℕ
2625a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℕ)
27 nnmulcl 11660 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2826, 27sylan 583 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℕ)
2928peano2nnd 11653 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ)
3029nnrecred 11687 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
3124, 30eqeltrd 2916 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
32 nnre 11643 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3332adantl 485 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
3428nnred 11651 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℝ)
3529nnred 11651 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ)
36 nnnn0 11903 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3736adantl 485 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
38 nn0addge1 11942 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 𝑘))
3933, 37, 38syl2anc 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 𝑘))
4033recnd 10669 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
41402timesd 11879 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘))
4239, 41breqtrrd 5081 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (2 · 𝑘))
4334lep1d 11571 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1))
4433, 34, 35, 42, 43letrd 10797 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ ((2 · 𝑘) + 1))
45 nngt0 11667 . . . . . . 7 (𝑘 ∈ ℕ → 0 < 𝑘)
4645adantl 485 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
4729nngt0d 11685 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 < ((2 · 𝑘) + 1))
48 lerec 11523 . . . . . 6 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ (((2 · 𝑘) + 1) ∈ ℝ ∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
4933, 46, 35, 47, 48syl22anc 837 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)))
5044, 49mpbid 235 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5150, 24, 153brtr4d 5085 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘))
5229nnrpd 12428 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ+)
5352rpreccld 12440 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
5453rpge0d 12434 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5554, 24breqtrrd 5081 . . 3 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
561, 2, 5, 10, 18, 31, 51, 55climsqz2 15000 . 2 (⊤ → 𝐺 ⇝ 0)
5756mptru 1545 1 𝐺 ⇝ 0
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2115  Vcvv 3480   class class class wbr 5053   ↦ cmpt 5133  ‘cfv 6345  (class class class)co 7151  ℂcc 10535  ℝcr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675   ≤ cle 10676   / cdiv 11297  ℕcn 11636  2c2 11691  ℕ0cn0 11896   ⇝ cli 14843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-pm 8407  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-inf 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fl 13168  df-seq 13376  df-exp 13437  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848 This theorem is referenced by:  basellem7  25681  basellem9  25683
 Copyright terms: Public domain W3C validator