Step | Hyp | Ref
| Expression |
1 | | nnuz 12603 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12334 |
. . 3
⊢ (⊤
→ 1 ∈ ℤ) |
3 | | ax-1cn 10913 |
. . . 4
⊢ 1 ∈
ℂ |
4 | | divcnv 15546 |
. . . 4
⊢ (1 ∈
ℂ → (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0) |
5 | 3, 4 | mp1i 13 |
. . 3
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / 𝑛)) ⇝
0) |
6 | | basel.g |
. . . . 5
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1))) |
7 | | nnex 11962 |
. . . . . 6
⊢ ℕ
∈ V |
8 | 7 | mptex 7093 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (1 / ((2
· 𝑛) + 1))) ∈
V |
9 | 6, 8 | eqeltri 2836 |
. . . 4
⊢ 𝐺 ∈ V |
10 | 9 | a1i 11 |
. . 3
⊢ (⊤
→ 𝐺 ∈
V) |
11 | | oveq2 7276 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘)) |
12 | | eqid 2739 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
13 | | ovex 7301 |
. . . . . 6
⊢ (1 /
𝑘) ∈
V |
14 | 11, 12, 13 | fvmpt 6869 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (1 /
𝑛))‘𝑘) = (1 / 𝑘)) |
15 | 14 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / 𝑛))‘𝑘) = (1 / 𝑘)) |
16 | | nnrecre 11998 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
17 | 16 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / 𝑘) ∈ ℝ) |
18 | 15, 17 | eqeltrd 2840 |
. . 3
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / 𝑛))‘𝑘) ∈ ℝ) |
19 | | oveq2 7276 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘)) |
20 | 19 | oveq1d 7283 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1)) |
21 | 20 | oveq2d 7284 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1))) |
22 | | ovex 7301 |
. . . . . 6
⊢ (1 / ((2
· 𝑘) + 1)) ∈
V |
23 | 21, 6, 22 | fvmpt 6869 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = (1 / ((2 · 𝑘) + 1))) |
24 | 23 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) = (1 / ((2 · 𝑘) + 1))) |
25 | | 2nn 12029 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℕ) |
27 | | nnmulcl 11980 |
. . . . . . 7
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ∈ ℕ) |
28 | 26, 27 | sylan 579 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ∈ ℕ) |
29 | 28 | peano2nnd 11973 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℕ) |
30 | 29 | nnrecred 12007 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈ ℝ) |
31 | 24, 30 | eqeltrd 2840 |
. . 3
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
32 | | nnre 11963 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
33 | 32 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℝ) |
34 | 28 | nnred 11971 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ∈ ℝ) |
35 | 29 | nnred 11971 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((2 · 𝑘) + 1) ∈ ℝ) |
36 | | nnnn0 12223 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
37 | 36 | adantl 481 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℕ0) |
38 | | nn0addge1 12262 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℝ ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ≤ (𝑘 + 𝑘)) |
39 | 33, 37, 38 | syl2anc 583 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
≤ (𝑘 + 𝑘)) |
40 | 33 | recnd 10987 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℂ) |
41 | 40 | 2timesd 12199 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) = (𝑘 + 𝑘)) |
42 | 39, 41 | breqtrrd 5106 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
≤ (2 · 𝑘)) |
43 | 34 | lep1d 11889 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · 𝑘) ≤ ((2 · 𝑘) + 1)) |
44 | 33, 34, 35, 42, 43 | letrd 11115 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
≤ ((2 · 𝑘) +
1)) |
45 | | nngt0 11987 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
46 | 45 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 < 𝑘) |
47 | 29 | nngt0d 12005 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 < ((2 · 𝑘) + 1)) |
48 | | lerec 11841 |
. . . . . 6
⊢ (((𝑘 ∈ ℝ ∧ 0 <
𝑘) ∧ (((2 ·
𝑘) + 1) ∈ ℝ
∧ 0 < ((2 · 𝑘) + 1))) → (𝑘 ≤ ((2 · 𝑘) + 1) ↔ (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))) |
49 | 33, 46, 35, 47, 48 | syl22anc 835 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘
≤ ((2 · 𝑘) + 1)
↔ (1 / ((2 · 𝑘)
+ 1)) ≤ (1 / 𝑘))) |
50 | 44, 49 | mpbid 231 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘)) |
51 | 50, 24, 15 | 3brtr4d 5110 |
. . 3
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘𝑘)) |
52 | 29 | nnrpd 12752 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((2 · 𝑘) + 1) ∈
ℝ+) |
53 | 52 | rpreccld 12764 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / ((2 · 𝑘) + 1)) ∈
ℝ+) |
54 | 53 | rpge0d 12758 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 ≤ (1 / ((2 · 𝑘) + 1))) |
55 | 54, 24 | breqtrrd 5106 |
. . 3
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
56 | 1, 2, 5, 10, 18, 31, 51, 55 | climsqz2 15332 |
. 2
⊢ (⊤
→ 𝐺 ⇝
0) |
57 | 56 | mptru 1548 |
1
⊢ 𝐺 ⇝ 0 |