| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1tmmul2fv | Structured version Visualization version GIF version | ||
| Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1tm.z | ⊢ 0 = (0g‘𝑅) |
| coe1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
| coe1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
| coe1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
| coe1tm.e | ⊢ ↑ = (.g‘𝑁) |
| coe1tmmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1tmmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1tmmul.u | ⊢ × = (.r‘𝑅) |
| coe1tmmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| coe1tmmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| coe1tmmul.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| coe1tmmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| coe1tmmul2fv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| coe1tmmul2fv | ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 2 | coe1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | coe1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 5 | coe1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 6 | coe1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
| 7 | coe1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 8 | coe1tmmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1tmmul.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1tmmul.u | . . . 4 ⊢ × = (.r‘𝑅) | |
| 11 | coe1tmmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 12 | coe1tmmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 13 | coe1tmmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 14 | coe1tmmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | coe1tmmul2 22190 | . . 3 ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) |
| 16 | 15 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌))) |
| 17 | coe1tmmul2fv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
| 18 | 14, 17 | nn0addcld 12446 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
| 19 | breq2 5093 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
| 20 | fvoveq1 7369 | . . . . . . 7 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
| 21 | 20 | oveq1d 7361 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
| 22 | 19, 21 | ifbieq1d 4497 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
| 23 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) | |
| 24 | ovex 7379 | . . . . . 6 ⊢ (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) ∈ V | |
| 25 | 1 | fvexi 6836 | . . . . . 6 ⊢ 0 ∈ V |
| 26 | 24, 25 | ifex 4523 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) ∈ V |
| 27 | 22, 23, 26 | fvmpt 6929 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
| 28 | 18, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
| 29 | 14 | nn0red 12443 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 30 | nn0addge1 12427 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
| 31 | 29, 17, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
| 32 | 31 | iftrued 4480 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
| 33 | 14 | nn0cnd 12444 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 34 | 17 | nn0cnd 12444 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 35 | 33, 34 | pncan2d 11474 | . . . . 5 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
| 36 | 35 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
| 37 | 36 | oveq1d 7361 | . . 3 ⊢ (𝜑 → (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| 38 | 28, 32, 37 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| 39 | 16, 38 | eqtrd 2766 | 1 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 + caddc 11009 ≤ cle 11147 − cmin 11344 ℕ0cn0 12381 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 .gcmg 18980 mulGrpcmgp 20058 Ringcrg 20151 var1cv1 22088 Poly1cpl1 22089 coe1cco1 22090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 |
| This theorem is referenced by: ply1divex 26069 |
| Copyright terms: Public domain | W3C validator |