|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > coe1tmmul2fv | Structured version Visualization version GIF version | ||
| Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| coe1tm.z | ⊢ 0 = (0g‘𝑅) | 
| coe1tm.k | ⊢ 𝐾 = (Base‘𝑅) | 
| coe1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) | 
| coe1tm.x | ⊢ 𝑋 = (var1‘𝑅) | 
| coe1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) | 
| coe1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) | 
| coe1tm.e | ⊢ ↑ = (.g‘𝑁) | 
| coe1tmmul.b | ⊢ 𝐵 = (Base‘𝑃) | 
| coe1tmmul.t | ⊢ ∙ = (.r‘𝑃) | 
| coe1tmmul.u | ⊢ × = (.r‘𝑅) | 
| coe1tmmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| coe1tmmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| coe1tmmul.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) | 
| coe1tmmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) | 
| coe1tmmul2fv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) | 
| Ref | Expression | 
|---|---|
| coe1tmmul2fv | ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | coe1tm.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 2 | coe1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | coe1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 5 | coe1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 6 | coe1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
| 7 | coe1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 8 | coe1tmmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1tmmul.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1tmmul.u | . . . 4 ⊢ × = (.r‘𝑅) | |
| 11 | coe1tmmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 12 | coe1tmmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 13 | coe1tmmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 14 | coe1tmmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | coe1tmmul2 22279 | . . 3 ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) | 
| 16 | 15 | fveq1d 6908 | . 2 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌))) | 
| 17 | coe1tmmul2fv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
| 18 | 14, 17 | nn0addcld 12591 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) | 
| 19 | breq2 5147 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
| 20 | fvoveq1 7454 | . . . . . . 7 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
| 21 | 20 | oveq1d 7446 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) | 
| 22 | 19, 21 | ifbieq1d 4550 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) | 
| 23 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) | |
| 24 | ovex 7464 | . . . . . 6 ⊢ (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) ∈ V | |
| 25 | 1 | fvexi 6920 | . . . . . 6 ⊢ 0 ∈ V | 
| 26 | 24, 25 | ifex 4576 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) ∈ V | 
| 27 | 22, 23, 26 | fvmpt 7016 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) | 
| 28 | 18, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) | 
| 29 | 14 | nn0red 12588 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| 30 | nn0addge1 12572 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
| 31 | 29, 17, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) | 
| 32 | 31 | iftrued 4533 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) | 
| 33 | 14 | nn0cnd 12589 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | 
| 34 | 17 | nn0cnd 12589 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) | 
| 35 | 33, 34 | pncan2d 11622 | . . . . 5 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) | 
| 36 | 35 | fveq2d 6910 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) | 
| 37 | 36 | oveq1d 7446 | . . 3 ⊢ (𝜑 → (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | 
| 38 | 28, 32, 37 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | 
| 39 | 16, 38 | eqtrd 2777 | 1 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 + caddc 11158 ≤ cle 11296 − cmin 11492 ℕ0cn0 12526 Basecbs 17247 .rcmulr 17298 ·𝑠 cvsca 17301 0gc0g 17484 .gcmg 19085 mulGrpcmgp 20137 Ringcrg 20230 var1cv1 22177 Poly1cpl1 22178 coe1cco1 22179 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-psr 21929 df-mvr 21930 df-mpl 21931 df-opsr 21933 df-psr1 22181 df-vr1 22182 df-ply1 22183 df-coe1 22184 | 
| This theorem is referenced by: ply1divex 26176 | 
| Copyright terms: Public domain | W3C validator |