| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1tmmul2fv | Structured version Visualization version GIF version | ||
| Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1tm.z | ⊢ 0 = (0g‘𝑅) |
| coe1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
| coe1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
| coe1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
| coe1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
| coe1tm.e | ⊢ ↑ = (.g‘𝑁) |
| coe1tmmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1tmmul.t | ⊢ ∙ = (.r‘𝑃) |
| coe1tmmul.u | ⊢ × = (.r‘𝑅) |
| coe1tmmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| coe1tmmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| coe1tmmul.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| coe1tmmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| coe1tmmul2fv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| coe1tmmul2fv | ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 2 | coe1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | coe1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | coe1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 5 | coe1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 6 | coe1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
| 7 | coe1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 8 | coe1tmmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | coe1tmmul.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
| 10 | coe1tmmul.u | . . . 4 ⊢ × = (.r‘𝑅) | |
| 11 | coe1tmmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 12 | coe1tmmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 13 | coe1tmmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 14 | coe1tmmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | coe1tmmul2 22160 | . . 3 ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) |
| 16 | 15 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌))) |
| 17 | coe1tmmul2fv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
| 18 | 14, 17 | nn0addcld 12449 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
| 19 | breq2 5096 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
| 20 | fvoveq1 7372 | . . . . . . 7 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
| 21 | 20 | oveq1d 7364 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
| 22 | 19, 21 | ifbieq1d 4501 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
| 23 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) | |
| 24 | ovex 7382 | . . . . . 6 ⊢ (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) ∈ V | |
| 25 | 1 | fvexi 6836 | . . . . . 6 ⊢ 0 ∈ V |
| 26 | 24, 25 | ifex 4527 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) ∈ V |
| 27 | 22, 23, 26 | fvmpt 6930 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
| 28 | 18, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
| 29 | 14 | nn0red 12446 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 30 | nn0addge1 12430 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
| 31 | 29, 17, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
| 32 | 31 | iftrued 4484 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
| 33 | 14 | nn0cnd 12447 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 34 | 17 | nn0cnd 12447 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 35 | 33, 34 | pncan2d 11477 | . . . . 5 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
| 36 | 35 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
| 37 | 36 | oveq1d 7364 | . . 3 ⊢ (𝜑 → (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| 38 | 28, 32, 37 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| 39 | 16, 38 | eqtrd 2764 | 1 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 + caddc 11012 ≤ cle 11150 − cmin 11347 ℕ0cn0 12384 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 .gcmg 18946 mulGrpcmgp 20025 Ringcrg 20118 var1cv1 22058 Poly1cpl1 22059 coe1cco1 22060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 |
| This theorem is referenced by: ply1divex 26040 |
| Copyright terms: Public domain | W3C validator |