![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1tmmul2fv | Structured version Visualization version GIF version |
Description: Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
coe1tm.z | ⊢ 0 = (0g‘𝑅) |
coe1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
coe1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
coe1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
coe1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
coe1tm.e | ⊢ ↑ = (.g‘𝑁) |
coe1tmmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1tmmul.t | ⊢ ∙ = (.r‘𝑃) |
coe1tmmul.u | ⊢ × = (.r‘𝑅) |
coe1tmmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
coe1tmmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
coe1tmmul.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
coe1tmmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
coe1tmmul2fv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
Ref | Expression |
---|---|
coe1tmmul2fv | ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1tm.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | coe1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
3 | coe1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | coe1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
5 | coe1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
6 | coe1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | coe1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
8 | coe1tmmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
9 | coe1tmmul.t | . . . 4 ⊢ ∙ = (.r‘𝑃) | |
10 | coe1tmmul.u | . . . 4 ⊢ × = (.r‘𝑅) | |
11 | coe1tmmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
12 | coe1tmmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
13 | coe1tmmul.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
14 | coe1tmmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | coe1tmmul2 22300 | . . 3 ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) |
16 | 15 | fveq1d 6922 | . 2 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌))) |
17 | coe1tmmul2fv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
18 | 14, 17 | nn0addcld 12617 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
19 | breq2 5170 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
20 | fvoveq1 7471 | . . . . . . 7 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
21 | 20 | oveq1d 7463 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
22 | 19, 21 | ifbieq1d 4572 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
23 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 )) | |
24 | ovex 7481 | . . . . . 6 ⊢ (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) ∈ V | |
25 | 1 | fvexi 6934 | . . . . . 6 ⊢ 0 ∈ V |
26 | 24, 25 | ifex 4598 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) ∈ V |
27 | 22, 23, 26 | fvmpt 7029 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
28 | 18, 27 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 )) |
29 | 14 | nn0red 12614 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
30 | nn0addge1 12599 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
31 | 29, 17, 30 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
32 | 31 | iftrued 4556 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶), 0 ) = (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶)) |
33 | 14 | nn0cnd 12615 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
34 | 17 | nn0cnd 12615 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
35 | 33, 34 | pncan2d 11649 | . . . . 5 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
36 | 35 | fveq2d 6924 | . . . 4 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
37 | 36 | oveq1d 7463 | . . 3 ⊢ (𝜑 → (((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) × 𝐶) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
38 | 28, 32, 37 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
39 | 16, 38 | eqtrd 2780 | 1 ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 + caddc 11187 ≤ cle 11325 − cmin 11520 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 ·𝑠 cvsca 17315 0gc0g 17499 .gcmg 19107 mulGrpcmgp 20161 Ringcrg 20260 var1cv1 22198 Poly1cpl1 22199 coe1cco1 22200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 |
This theorem is referenced by: ply1divex 26196 |
Copyright terms: Public domain | W3C validator |