| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1pwmulfv | Structured version Visualization version GIF version | ||
| Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| Ref | Expression |
|---|---|
| coe1pwmul.z | ⊢ 0 = (0g‘𝑅) |
| coe1pwmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1pwmul.x | ⊢ 𝑋 = (var1‘𝑅) |
| coe1pwmul.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
| coe1pwmul.e | ⊢ ↑ = (.g‘𝑁) |
| coe1pwmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1pwmul.t | ⊢ · = (.r‘𝑃) |
| coe1pwmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| coe1pwmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| coe1pwmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| coe1pwmulfv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| coe1pwmulfv | ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1pwmul.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 2 | coe1pwmul.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | coe1pwmul.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 4 | coe1pwmul.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
| 5 | coe1pwmul.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 6 | coe1pwmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | coe1pwmul.t | . . . 4 ⊢ · = (.r‘𝑃) | |
| 8 | coe1pwmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | coe1pwmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 10 | coe1pwmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | coe1pwmul 22188 | . . 3 ⊢ (𝜑 → (coe1‘((𝐷 ↑ 𝑋) · 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))) |
| 12 | 11 | fveq1d 6819 | . 2 ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌))) |
| 13 | coe1pwmulfv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
| 14 | 10, 13 | nn0addcld 12441 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
| 15 | breq2 5090 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
| 16 | fvoveq1 7364 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
| 17 | 15, 16 | ifbieq1d 4495 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
| 18 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 )) | |
| 19 | fvex 6830 | . . . . . 6 ⊢ ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) ∈ V | |
| 20 | 1 | fvexi 6831 | . . . . . 6 ⊢ 0 ∈ V |
| 21 | 19, 20 | ifex 4521 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 ) ∈ V |
| 22 | 17, 18, 21 | fvmpt 6924 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
| 23 | 14, 22 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
| 24 | 10 | nn0red 12438 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 25 | nn0addge1 12422 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
| 26 | 24, 13, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
| 27 | 26 | iftrued 4478 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 ) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) |
| 28 | 10 | nn0cnd 12439 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 29 | 13 | nn0cnd 12439 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 30 | 28, 29 | pncan2d 11469 | . . . 4 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
| 31 | 30 | fveq2d 6821 | . . 3 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
| 32 | 23, 27, 31 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
| 33 | 12, 32 | eqtrd 2766 | 1 ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4470 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 + caddc 11004 ≤ cle 11142 − cmin 11339 ℕ0cn0 12376 Basecbs 17115 .rcmulr 17157 0gc0g 17338 .gcmg 18975 mulGrpcmgp 20053 Ringcrg 20146 var1cv1 22083 Poly1cpl1 22084 coe1cco1 22085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-lss 20860 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-psr1 22087 df-vr1 22088 df-ply1 22089 df-coe1 22090 |
| This theorem is referenced by: hbtlem4 43159 |
| Copyright terms: Public domain | W3C validator |