| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1pwmulfv | Structured version Visualization version GIF version | ||
| Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| Ref | Expression |
|---|---|
| coe1pwmul.z | ⊢ 0 = (0g‘𝑅) |
| coe1pwmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1pwmul.x | ⊢ 𝑋 = (var1‘𝑅) |
| coe1pwmul.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
| coe1pwmul.e | ⊢ ↑ = (.g‘𝑁) |
| coe1pwmul.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1pwmul.t | ⊢ · = (.r‘𝑃) |
| coe1pwmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| coe1pwmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| coe1pwmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
| coe1pwmulfv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| coe1pwmulfv | ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1pwmul.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 2 | coe1pwmul.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | coe1pwmul.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
| 4 | coe1pwmul.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
| 5 | coe1pwmul.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
| 6 | coe1pwmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 7 | coe1pwmul.t | . . . 4 ⊢ · = (.r‘𝑃) | |
| 8 | coe1pwmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | coe1pwmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 10 | coe1pwmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | coe1pwmul 22212 | . . 3 ⊢ (𝜑 → (coe1‘((𝐷 ↑ 𝑋) · 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))) |
| 12 | 11 | fveq1d 6833 | . 2 ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌))) |
| 13 | coe1pwmulfv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
| 14 | 10, 13 | nn0addcld 12457 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
| 15 | breq2 5099 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
| 16 | fvoveq1 7378 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
| 17 | 15, 16 | ifbieq1d 4501 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
| 18 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 )) | |
| 19 | fvex 6844 | . . . . . 6 ⊢ ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) ∈ V | |
| 20 | 1 | fvexi 6845 | . . . . . 6 ⊢ 0 ∈ V |
| 21 | 19, 20 | ifex 4527 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 ) ∈ V |
| 22 | 17, 18, 21 | fvmpt 6938 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
| 23 | 14, 22 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
| 24 | 10 | nn0red 12454 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 25 | nn0addge1 12438 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
| 26 | 24, 13, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
| 27 | 26 | iftrued 4484 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 ) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) |
| 28 | 10 | nn0cnd 12455 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 29 | 13 | nn0cnd 12455 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 30 | 28, 29 | pncan2d 11485 | . . . 4 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
| 31 | 30 | fveq2d 6835 | . . 3 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
| 32 | 23, 27, 31 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
| 33 | 12, 32 | eqtrd 2768 | 1 ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 + caddc 11020 ≤ cle 11158 − cmin 11355 ℕ0cn0 12392 Basecbs 17127 .rcmulr 17169 0gc0g 17350 .gcmg 18988 mulGrpcmgp 20066 Ringcrg 20159 var1cv1 22107 Poly1cpl1 22108 coe1cco1 22109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-psr1 22111 df-vr1 22112 df-ply1 22113 df-coe1 22114 |
| This theorem is referenced by: hbtlem4 43283 |
| Copyright terms: Public domain | W3C validator |