Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1pwmulfv | Structured version Visualization version GIF version |
Description: Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
Ref | Expression |
---|---|
coe1pwmul.z | ⊢ 0 = (0g‘𝑅) |
coe1pwmul.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1pwmul.x | ⊢ 𝑋 = (var1‘𝑅) |
coe1pwmul.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
coe1pwmul.e | ⊢ ↑ = (.g‘𝑁) |
coe1pwmul.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1pwmul.t | ⊢ · = (.r‘𝑃) |
coe1pwmul.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
coe1pwmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
coe1pwmul.d | ⊢ (𝜑 → 𝐷 ∈ ℕ0) |
coe1pwmulfv.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
Ref | Expression |
---|---|
coe1pwmulfv | ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1pwmul.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | coe1pwmul.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | coe1pwmul.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
4 | coe1pwmul.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
5 | coe1pwmul.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
6 | coe1pwmul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | coe1pwmul.t | . . . 4 ⊢ · = (.r‘𝑃) | |
8 | coe1pwmul.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | coe1pwmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
10 | coe1pwmul.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℕ0) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | coe1pwmul 21548 | . . 3 ⊢ (𝜑 → (coe1‘((𝐷 ↑ 𝑋) · 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))) |
12 | 11 | fveq1d 6821 | . 2 ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌))) |
13 | coe1pwmulfv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
14 | 10, 13 | nn0addcld 12390 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝑌) ∈ ℕ0) |
15 | breq2 5093 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → (𝐷 ≤ 𝑥 ↔ 𝐷 ≤ (𝐷 + 𝑌))) | |
16 | fvoveq1 7352 | . . . . . 6 ⊢ (𝑥 = (𝐷 + 𝑌) → ((coe1‘𝐴)‘(𝑥 − 𝐷)) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) | |
17 | 15, 16 | ifbieq1d 4496 | . . . . 5 ⊢ (𝑥 = (𝐷 + 𝑌) → if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
18 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 )) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 )) | |
19 | fvex 6832 | . . . . . 6 ⊢ ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) ∈ V | |
20 | 1 | fvexi 6833 | . . . . . 6 ⊢ 0 ∈ V |
21 | 19, 20 | ifex 4522 | . . . . 5 ⊢ if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 ) ∈ V |
22 | 17, 18, 21 | fvmpt 6925 | . . . 4 ⊢ ((𝐷 + 𝑌) ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
23 | 14, 22 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 )) |
24 | 10 | nn0red 12387 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
25 | nn0addge1 12372 | . . . . 5 ⊢ ((𝐷 ∈ ℝ ∧ 𝑌 ∈ ℕ0) → 𝐷 ≤ (𝐷 + 𝑌)) | |
26 | 24, 13, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐷 ≤ (𝐷 + 𝑌)) |
27 | 26 | iftrued 4480 | . . 3 ⊢ (𝜑 → if(𝐷 ≤ (𝐷 + 𝑌), ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)), 0 ) = ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷))) |
28 | 10 | nn0cnd 12388 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
29 | 13 | nn0cnd 12388 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℂ) |
30 | 28, 29 | pncan2d 11427 | . . . 4 ⊢ (𝜑 → ((𝐷 + 𝑌) − 𝐷) = 𝑌) |
31 | 30 | fveq2d 6823 | . . 3 ⊢ (𝜑 → ((coe1‘𝐴)‘((𝐷 + 𝑌) − 𝐷)) = ((coe1‘𝐴)‘𝑌)) |
32 | 23, 27, 31 | 3eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
33 | 12, 32 | eqtrd 2776 | 1 ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ifcif 4472 class class class wbr 5089 ↦ cmpt 5172 ‘cfv 6473 (class class class)co 7329 ℝcr 10963 + caddc 10967 ≤ cle 11103 − cmin 11298 ℕ0cn0 12326 Basecbs 17001 .rcmulr 17052 0gc0g 17239 .gcmg 18788 mulGrpcmgp 19807 Ringcrg 19870 var1cv1 21445 Poly1cpl1 21446 coe1cco1 21447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-ofr 7588 df-om 7773 df-1st 7891 df-2nd 7892 df-supp 8040 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-pm 8681 df-ixp 8749 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-fsupp 9219 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-fzo 13476 df-seq 13815 df-hash 14138 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-sca 17067 df-vsca 17068 df-tset 17070 df-ple 17071 df-0g 17241 df-gsum 17242 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-mhm 18519 df-submnd 18520 df-grp 18668 df-minusg 18669 df-sbg 18670 df-mulg 18789 df-subg 18840 df-ghm 18920 df-cntz 19011 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-subrg 20119 df-lmod 20223 df-lss 20292 df-psr 21210 df-mvr 21211 df-mpl 21212 df-opsr 21214 df-psr1 21449 df-vr1 21450 df-ply1 21451 df-coe1 21452 |
This theorem is referenced by: hbtlem4 41202 |
Copyright terms: Public domain | W3C validator |