| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leibpisum | Structured version Visualization version GIF version | ||
| Description: The Leibniz formula for π. This version of leibpi 26940 looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| leibpisum | ⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12903 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12609 | . . 3 ⊢ (⊤ → 0 ∈ ℤ) | |
| 3 | oveq2 7422 | . . . . . 6 ⊢ (𝑘 = 𝑛 → (-1↑𝑘) = (-1↑𝑛)) | |
| 4 | oveq2 7422 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛)) | |
| 5 | 4 | oveq1d 7429 | . . . . . 6 ⊢ (𝑘 = 𝑛 → ((2 · 𝑘) + 1) = ((2 · 𝑛) + 1)) |
| 6 | 3, 5 | oveq12d 7432 | . . . . 5 ⊢ (𝑘 = 𝑛 → ((-1↑𝑘) / ((2 · 𝑘) + 1)) = ((-1↑𝑛) / ((2 · 𝑛) + 1))) |
| 7 | eqid 2734 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 ↦ ((-1↑𝑘) / ((2 · 𝑘) + 1))) = (𝑘 ∈ ℕ0 ↦ ((-1↑𝑘) / ((2 · 𝑘) + 1))) | |
| 8 | ovex 7447 | . . . . 5 ⊢ ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6997 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((-1↑𝑘) / ((2 · 𝑘) + 1)))‘𝑛) = ((-1↑𝑛) / ((2 · 𝑛) + 1))) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((-1↑𝑘) / ((2 · 𝑘) + 1)))‘𝑛) = ((-1↑𝑛) / ((2 · 𝑛) + 1))) |
| 11 | neg1rr 12364 | . . . . . . 7 ⊢ -1 ∈ ℝ | |
| 12 | reexpcl 14102 | . . . . . . 7 ⊢ ((-1 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (-1↑𝑛) ∈ ℝ) | |
| 13 | 11, 12 | mpan 690 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (-1↑𝑛) ∈ ℝ) |
| 14 | 2nn0 12527 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 15 | nn0mulcl 12546 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0) | |
| 16 | 14, 15 | mpan 690 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0) |
| 17 | nn0p1nn 12549 | . . . . . . 7 ⊢ ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ) | |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ) |
| 19 | 13, 18 | nndivred 12303 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℝ) |
| 20 | 19 | recnd 11272 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ) |
| 21 | 20 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ0) → ((-1↑𝑛) / ((2 · 𝑛) + 1)) ∈ ℂ) |
| 22 | 7 | leibpi 26940 | . . . 4 ⊢ seq0( + , (𝑘 ∈ ℕ0 ↦ ((-1↑𝑘) / ((2 · 𝑘) + 1)))) ⇝ (π / 4) |
| 23 | 22 | a1i 11 | . . 3 ⊢ (⊤ → seq0( + , (𝑘 ∈ ℕ0 ↦ ((-1↑𝑘) / ((2 · 𝑘) + 1)))) ⇝ (π / 4)) |
| 24 | 1, 2, 10, 21, 23 | isumclim 15776 | . 2 ⊢ (⊤ → Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4)) |
| 25 | 24 | mptru 1546 | 1 ⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 -cneg 11476 / cdiv 11903 ℕcn 12249 2c2 12304 4c4 12306 ℕ0cn0 12510 seqcseq 14025 ↑cexp 14085 ⇝ cli 15503 Σcsu 15705 πcpi 16085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-xnn0 12584 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ioc 13375 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-fl 13815 df-mod 13893 df-seq 14026 df-exp 14086 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 df-tan 16090 df-pi 16091 df-dvds 16274 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-fbas 21328 df-fg 21329 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cld 22992 df-ntr 22993 df-cls 22994 df-nei 23071 df-lp 23109 df-perf 23110 df-cn 23200 df-cnp 23201 df-t1 23287 df-haus 23288 df-cmp 23360 df-tx 23535 df-hmeo 23728 df-fil 23819 df-fm 23911 df-flim 23912 df-flf 23913 df-xms 24294 df-ms 24295 df-tms 24296 df-cncf 24859 df-limc 25856 df-dv 25857 df-ulm 26375 df-log 26553 df-atan 26865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |