![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0unit | Structured version Visualization version GIF version |
Description: The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
0unit.1 | β’ π = (Unitβπ ) |
0unit.2 | β’ 0 = (0gβπ ) |
0unit.3 | β’ 1 = (1rβπ ) |
Ref | Expression |
---|---|
0unit | β’ (π β Ring β ( 0 β π β 1 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0unit.1 | . . . 4 β’ π = (Unitβπ ) | |
2 | eqid 2728 | . . . 4 β’ (invrβπ ) = (invrβπ ) | |
3 | eqid 2728 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
4 | 0unit.3 | . . . 4 β’ 1 = (1rβπ ) | |
5 | 1, 2, 3, 4 | unitrinv 20332 | . . 3 β’ ((π β Ring β§ 0 β π) β ( 0 (.rβπ )((invrβπ )β 0 )) = 1 ) |
6 | eqid 2728 | . . . . 5 β’ (Baseβπ ) = (Baseβπ ) | |
7 | 1, 2, 6 | ringinvcl 20330 | . . . 4 β’ ((π β Ring β§ 0 β π) β ((invrβπ )β 0 ) β (Baseβπ )) |
8 | 0unit.2 | . . . . 5 β’ 0 = (0gβπ ) | |
9 | 6, 3, 8 | ringlz 20228 | . . . 4 β’ ((π β Ring β§ ((invrβπ )β 0 ) β (Baseβπ )) β ( 0 (.rβπ )((invrβπ )β 0 )) = 0 ) |
10 | 7, 9 | syldan 590 | . . 3 β’ ((π β Ring β§ 0 β π) β ( 0 (.rβπ )((invrβπ )β 0 )) = 0 ) |
11 | 5, 10 | eqtr3d 2770 | . 2 β’ ((π β Ring β§ 0 β π) β 1 = 0 ) |
12 | simpr 484 | . . 3 β’ ((π β Ring β§ 1 = 0 ) β 1 = 0 ) | |
13 | 1, 4 | 1unit 20312 | . . . 4 β’ (π β Ring β 1 β π) |
14 | 13 | adantr 480 | . . 3 β’ ((π β Ring β§ 1 = 0 ) β 1 β π) |
15 | 12, 14 | eqeltrrd 2830 | . 2 β’ ((π β Ring β§ 1 = 0 ) β 0 β π) |
16 | 11, 15 | impbida 800 | 1 β’ (π β Ring β ( 0 β π β 1 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βcfv 6548 (class class class)co 7420 Basecbs 17179 .rcmulr 17233 0gc0g 17420 1rcur 20120 Ringcrg 20172 Unitcui 20293 invrcinvr 20325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-oppr 20272 df-dvdsr 20295 df-unit 20296 df-invr 20326 |
This theorem is referenced by: nzrunit 20460 imadrhmcl 20684 fidomndrng 21260 gzrngunitlem 21364 unitnz 32947 isdrng4 32962 |
Copyright terms: Public domain | W3C validator |