Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0unit | Structured version Visualization version GIF version |
Description: The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
0unit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
0unit.2 | ⊢ 0 = (0g‘𝑅) |
0unit.3 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
0unit | ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0unit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | eqid 2759 | . . . 4 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
3 | eqid 2759 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 0unit.3 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
5 | 1, 2, 3, 4 | unitrinv 19500 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → ( 0 (.r‘𝑅)((invr‘𝑅)‘ 0 )) = 1 ) |
6 | eqid 2759 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 1, 2, 6 | ringinvcl 19498 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → ((invr‘𝑅)‘ 0 ) ∈ (Base‘𝑅)) |
8 | 0unit.2 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
9 | 6, 3, 8 | ringlz 19409 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((invr‘𝑅)‘ 0 ) ∈ (Base‘𝑅)) → ( 0 (.r‘𝑅)((invr‘𝑅)‘ 0 )) = 0 ) |
10 | 7, 9 | syldan 595 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → ( 0 (.r‘𝑅)((invr‘𝑅)‘ 0 )) = 0 ) |
11 | 5, 10 | eqtr3d 2796 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝑈) → 1 = 0 ) |
12 | simpr 489 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 1 = 0 ) | |
13 | 1, 4 | 1unit 19480 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
14 | 13 | adantr 485 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 1 ∈ 𝑈) |
15 | 12, 14 | eqeltrrd 2854 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 1 = 0 ) → 0 ∈ 𝑈) |
16 | 11, 15 | impbida 801 | 1 ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ‘cfv 6336 (class class class)co 7151 Basecbs 16542 .rcmulr 16625 0gc0g 16772 1rcur 19320 Ringcrg 19366 Unitcui 19461 invrcinvr 19493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-grp 18173 df-minusg 18174 df-mgp 19309 df-ur 19321 df-ring 19368 df-oppr 19445 df-dvdsr 19463 df-unit 19464 df-invr 19494 |
This theorem is referenced by: nzrunit 20109 fidomndrng 20149 gzrngunitlem 20232 |
Copyright terms: Public domain | W3C validator |