MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0unit Structured version   Visualization version   GIF version

Theorem 0unit 19352
Description: The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
0unit.1 𝑈 = (Unit‘𝑅)
0unit.2 0 = (0g𝑅)
0unit.3 1 = (1r𝑅)
Assertion
Ref Expression
0unit (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))

Proof of Theorem 0unit
StepHypRef Expression
1 0unit.1 . . . 4 𝑈 = (Unit‘𝑅)
2 eqid 2825 . . . 4 (invr𝑅) = (invr𝑅)
3 eqid 2825 . . . 4 (.r𝑅) = (.r𝑅)
4 0unit.3 . . . 4 1 = (1r𝑅)
51, 2, 3, 4unitrinv 19350 . . 3 ((𝑅 ∈ Ring ∧ 0𝑈) → ( 0 (.r𝑅)((invr𝑅)‘ 0 )) = 1 )
6 eqid 2825 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
71, 2, 6ringinvcl 19348 . . . 4 ((𝑅 ∈ Ring ∧ 0𝑈) → ((invr𝑅)‘ 0 ) ∈ (Base‘𝑅))
8 0unit.2 . . . . 5 0 = (0g𝑅)
96, 3, 8ringlz 19259 . . . 4 ((𝑅 ∈ Ring ∧ ((invr𝑅)‘ 0 ) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((invr𝑅)‘ 0 )) = 0 )
107, 9syldan 591 . . 3 ((𝑅 ∈ Ring ∧ 0𝑈) → ( 0 (.r𝑅)((invr𝑅)‘ 0 )) = 0 )
115, 10eqtr3d 2862 . 2 ((𝑅 ∈ Ring ∧ 0𝑈) → 1 = 0 )
12 simpr 485 . . 3 ((𝑅 ∈ Ring ∧ 1 = 0 ) → 1 = 0 )
131, 41unit 19330 . . . 4 (𝑅 ∈ Ring → 1𝑈)
1413adantr 481 . . 3 ((𝑅 ∈ Ring ∧ 1 = 0 ) → 1𝑈)
1512, 14eqeltrrd 2918 . 2 ((𝑅 ∈ Ring ∧ 1 = 0 ) → 0𝑈)
1611, 15impbida 797 1 (𝑅 ∈ Ring → ( 0𝑈1 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  cfv 6351  (class class class)co 7151  Basecbs 16475  .rcmulr 16558  0gc0g 16705  1rcur 19173  Ringcrg 19219  Unitcui 19311  invrcinvr 19343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039  df-mgp 19162  df-ur 19174  df-ring 19221  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344
This theorem is referenced by:  nzrunit  19961  fidomndrng  20001  gzrngunitlem  20526
  Copyright terms: Public domain W3C validator