Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pcprendvds2 | Structured version Visualization version GIF version |
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcprendvds2 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclem.1 | . . 3 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
2 | pclem.2 | . . 3 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
3 | 1, 2 | pcprendvds 16539 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
4 | eluz2nn 12623 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℕ) |
6 | 5 | nnzd 12424 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℤ) |
7 | 1, 2 | pcprecl 16538 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
8 | 7 | simprd 496 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∥ 𝑁) |
9 | 7 | simpld 495 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
10 | 5, 9 | nnexpcld 13958 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℕ) |
11 | 10 | nnzd 12424 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℤ) |
12 | 10 | nnne0d 12023 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ≠ 0) |
13 | simprl 768 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
14 | dvdsval2 15964 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ (𝑃↑𝑆) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑆)) ∈ ℤ)) | |
15 | 11, 12, 13, 14 | syl3anc 1370 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑆)) ∈ ℤ)) |
16 | 8, 15 | mpbid 231 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃↑𝑆)) ∈ ℤ) |
17 | dvdscmul 15990 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑𝑆)) ∈ ℤ ∧ (𝑃↑𝑆) ∈ ℤ) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → ((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))))) | |
18 | 6, 16, 11, 17 | syl3anc 1370 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → ((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))))) |
19 | 5 | nncnd 11989 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ) |
20 | 19, 9 | expp1d 13863 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 1)) = ((𝑃↑𝑆) · 𝑃)) |
21 | 20 | eqcomd 2746 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · 𝑃) = (𝑃↑(𝑆 + 1))) |
22 | zcn 12324 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
23 | 22 | ad2antrl 725 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ) |
24 | 10 | nncnd 11989 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℂ) |
25 | 23, 24, 12 | divcan2d 11753 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))) = 𝑁) |
26 | 21, 25 | breq12d 5092 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))) ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
27 | 18, 26 | sylibd 238 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
28 | 3, 27 | mtod 197 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 {crab 3070 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 supcsup 9177 ℂcc 10870 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 · cmul 10877 < clt 11010 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12581 ↑cexp 13780 ∥ cdvds 15961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fl 13510 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-dvds 15962 |
This theorem is referenced by: pcpremul 16542 pczndvds2 16566 |
Copyright terms: Public domain | W3C validator |