![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcprendvds2 | Structured version Visualization version GIF version |
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcprendvds2 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclem.1 | . . 3 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
2 | pclem.2 | . . 3 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
3 | 1, 2 | pcprendvds 16887 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑(𝑆 + 1)) ∥ 𝑁) |
4 | eluz2nn 12949 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℕ) |
6 | 5 | nnzd 12666 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℤ) |
7 | 1, 2 | pcprecl 16886 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
8 | 7 | simprd 495 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∥ 𝑁) |
9 | 7 | simpld 494 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
10 | 5, 9 | nnexpcld 14294 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℕ) |
11 | 10 | nnzd 12666 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℤ) |
12 | 10 | nnne0d 12343 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ≠ 0) |
13 | simprl 770 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℤ) | |
14 | dvdsval2 16305 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ (𝑃↑𝑆) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑆)) ∈ ℤ)) | |
15 | 11, 12, 13, 14 | syl3anc 1371 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) ∥ 𝑁 ↔ (𝑁 / (𝑃↑𝑆)) ∈ ℤ)) |
16 | 8, 15 | mpbid 232 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑁 / (𝑃↑𝑆)) ∈ ℤ) |
17 | dvdscmul 16331 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑𝑆)) ∈ ℤ ∧ (𝑃↑𝑆) ∈ ℤ) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → ((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))))) | |
18 | 6, 16, 11, 17 | syl3anc 1371 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → ((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))))) |
19 | 5 | nncnd 12309 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ) |
20 | 19, 9 | expp1d 14197 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑆 + 1)) = ((𝑃↑𝑆) · 𝑃)) |
21 | 20 | eqcomd 2746 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · 𝑃) = (𝑃↑(𝑆 + 1))) |
22 | zcn 12644 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
23 | 22 | ad2antrl 727 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑁 ∈ ℂ) |
24 | 10 | nncnd 12309 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑𝑆) ∈ ℂ) |
25 | 23, 24, 12 | divcan2d 12072 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))) = 𝑁) |
26 | 21, 25 | breq12d 5179 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((𝑃↑𝑆) · 𝑃) ∥ ((𝑃↑𝑆) · (𝑁 / (𝑃↑𝑆))) ↔ (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
27 | 18, 26 | sylibd 239 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 ∥ (𝑁 / (𝑃↑𝑆)) → (𝑃↑(𝑆 + 1)) ∥ 𝑁)) |
28 | 3, 27 | mtod 198 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 / cdiv 11947 ℕcn 12293 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 ↑cexp 14112 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fl 13843 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 |
This theorem is referenced by: pcpremul 16890 pczndvds2 16914 |
Copyright terms: Public domain | W3C validator |