MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Structured version   Visualization version   GIF version

Theorem pcpre1 16754
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcpre1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 12502 . . . . . . . . . 10 1 ∈ ℤ
2 eleq1 2819 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ))
31, 2mpbiri 258 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ∈ ℤ)
4 ax-1ne0 11075 . . . . . . . . . 10 1 ≠ 0
5 neeq1 2990 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 258 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ≠ 0)
73, 6jca 511 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8 pclem.1 . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
9 pclem.2 . . . . . . . . 9 𝑆 = sup(𝐴, ℝ, < )
108, 9pcprecl 16751 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
117, 10sylan2 593 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
1211simprd 495 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 𝑁)
13 simpr 484 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑁 = 1)
1412, 13breqtrd 5115 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 1)
15 eluz2nn 12786 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
1615adantr 480 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ)
1711simpld 494 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
1816, 17nnexpcld 14152 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℕ)
1918nnzd 12495 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℤ)
20 1nn 12136 . . . . . 6 1 ∈ ℕ
21 dvdsle 16221 . . . . . 6 (((𝑃𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2219, 20, 21sylancl 586 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2314, 22mpd 15 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ 1)
2416nncnd 12141 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ)
2524exp0d 14047 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1)
2623, 25breqtrrd 5117 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ (𝑃↑0))
2716nnred 12140 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ)
2817nn0zd 12494 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℤ)
29 0zd 12480 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 0 ∈ ℤ)
30 eluz2gt1 12818 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
3130adantr 480 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 1 < 𝑃)
3227, 28, 29, 31leexp2d 14159 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃𝑆) ≤ (𝑃↑0)))
3326, 32mpbird 257 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0)
3410simpld 494 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
357, 34sylan2 593 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
36 nn0le0eq0 12409 . . 3 (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3735, 36syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3833, 37mpbid 232 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395   class class class wbr 5089  cfv 6481  (class class class)co 7346  supcsup 9324  cr 11005  0cc0 11006  1c1 11007   < clt 11146  cle 11147  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  cexp 13968  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  pczpre  16759  pc1  16767
  Copyright terms: Public domain W3C validator