MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Structured version   Visualization version   GIF version

Theorem pcpre1 16554
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcpre1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 12361 . . . . . . . . . 10 1 ∈ ℤ
2 eleq1 2828 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ))
31, 2mpbiri 257 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ∈ ℤ)
4 ax-1ne0 10951 . . . . . . . . . 10 1 ≠ 0
5 neeq1 3008 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 257 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ≠ 0)
73, 6jca 512 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8 pclem.1 . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
9 pclem.2 . . . . . . . . 9 𝑆 = sup(𝐴, ℝ, < )
108, 9pcprecl 16551 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
117, 10sylan2 593 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
1211simprd 496 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 𝑁)
13 simpr 485 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑁 = 1)
1412, 13breqtrd 5105 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 1)
15 eluz2nn 12635 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
1615adantr 481 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ)
1711simpld 495 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
1816, 17nnexpcld 13971 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℕ)
1918nnzd 12436 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℤ)
20 1nn 11995 . . . . . 6 1 ∈ ℕ
21 dvdsle 16030 . . . . . 6 (((𝑃𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2219, 20, 21sylancl 586 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2314, 22mpd 15 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ 1)
2416nncnd 12000 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ)
2524exp0d 13869 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1)
2623, 25breqtrrd 5107 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ (𝑃↑0))
2716nnred 11999 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ)
2817nn0zd 12435 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℤ)
29 0zd 12342 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 0 ∈ ℤ)
30 eluz2gt1 12671 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
3130adantr 481 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 1 < 𝑃)
3227, 28, 29, 31leexp2d 13980 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃𝑆) ≤ (𝑃↑0)))
3326, 32mpbird 256 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0)
3410simpld 495 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
357, 34sylan2 593 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
36 nn0le0eq0 12272 . . 3 (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3735, 36syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3833, 37mpbid 231 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  {crab 3070   class class class wbr 5079  cfv 6432  (class class class)co 7272  supcsup 9187  cr 10881  0cc0 10882  1c1 10883   < clt 11020  cle 11021  cn 11984  2c2 12039  0cn0 12244  cz 12330  cuz 12593  cexp 13793  cdvds 15974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-sup 9189  df-inf 9190  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-n0 12245  df-z 12331  df-uz 12594  df-rp 12742  df-fl 13523  df-seq 13733  df-exp 13794  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-dvds 15975
This theorem is referenced by:  pczpre  16559  pc1  16567
  Copyright terms: Public domain W3C validator