MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Structured version   Visualization version   GIF version

Theorem pcpre1 16875
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
pclem.2 𝑆 = sup(𝐴, ℝ, < )
Assertion
Ref Expression
pcpre1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 12644 . . . . . . . . . 10 1 ∈ ℤ
2 eleq1 2826 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ))
31, 2mpbiri 258 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ∈ ℤ)
4 ax-1ne0 11221 . . . . . . . . . 10 1 ≠ 0
5 neeq1 3000 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0))
64, 5mpbiri 258 . . . . . . . . 9 (𝑁 = 1 → 𝑁 ≠ 0)
73, 6jca 511 . . . . . . . 8 (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
8 pclem.1 . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
9 pclem.2 . . . . . . . . 9 𝑆 = sup(𝐴, ℝ, < )
108, 9pcprecl 16872 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
117, 10sylan2 593 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃𝑆) ∥ 𝑁))
1211simprd 495 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 𝑁)
13 simpr 484 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑁 = 1)
1412, 13breqtrd 5173 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∥ 1)
15 eluz2nn 12921 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
1615adantr 480 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ)
1711simpld 494 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
1816, 17nnexpcld 14280 . . . . . . 7 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℕ)
1918nnzd 12637 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ∈ ℤ)
20 1nn 12274 . . . . . 6 1 ∈ ℕ
21 dvdsle 16343 . . . . . 6 (((𝑃𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2219, 20, 21sylancl 586 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → ((𝑃𝑆) ∥ 1 → (𝑃𝑆) ≤ 1))
2314, 22mpd 15 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ 1)
2416nncnd 12279 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ)
2524exp0d 14176 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1)
2623, 25breqtrrd 5175 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑃𝑆) ≤ (𝑃↑0))
2716nnred 12278 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ)
2817nn0zd 12636 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℤ)
29 0zd 12622 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 0 ∈ ℤ)
30 eluz2gt1 12959 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
3130adantr 480 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 1 < 𝑃)
3227, 28, 29, 31leexp2d 14287 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃𝑆) ≤ (𝑃↑0)))
3326, 32mpbird 257 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0)
3410simpld 494 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0)
357, 34sylan2 593 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0)
36 nn0le0eq0 12551 . . 3 (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3735, 36syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0))
3833, 37mpbid 232 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 = 1) → 𝑆 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432   class class class wbr 5147  cfv 6562  (class class class)co 7430  supcsup 9477  cr 11151  0cc0 11152  1c1 11153   < clt 11292  cle 11293  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cexp 14098  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287
This theorem is referenced by:  pczpre  16880  pc1  16888
  Copyright terms: Public domain W3C validator