![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcpre1 | Structured version Visualization version GIF version |
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcpre1 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12644 | . . . . . . . . . 10 ⊢ 1 ∈ ℤ | |
2 | eleq1 2826 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ↔ 1 ∈ ℤ)) | |
3 | 1, 2 | mpbiri 258 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ∈ ℤ) |
4 | ax-1ne0 11221 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
5 | neeq1 3000 | . . . . . . . . . 10 ⊢ (𝑁 = 1 → (𝑁 ≠ 0 ↔ 1 ≠ 0)) | |
6 | 4, 5 | mpbiri 258 | . . . . . . . . 9 ⊢ (𝑁 = 1 → 𝑁 ≠ 0) |
7 | 3, 6 | jca 511 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) |
8 | pclem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
9 | pclem.2 | . . . . . . . . 9 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
10 | 8, 9 | pcprecl 16872 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
11 | 7, 10 | sylan2 593 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
12 | 11 | simprd 495 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 𝑁) |
13 | simpr 484 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑁 = 1) | |
14 | 12, 13 | breqtrd 5173 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∥ 1) |
15 | eluz2nn 12921 | . . . . . . . . 9 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ) | |
16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℕ) |
17 | 11 | simpld 494 | . . . . . . . 8 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
18 | 16, 17 | nnexpcld 14280 | . . . . . . 7 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℕ) |
19 | 18 | nnzd 12637 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ∈ ℤ) |
20 | 1nn 12274 | . . . . . 6 ⊢ 1 ∈ ℕ | |
21 | dvdsle 16343 | . . . . . 6 ⊢ (((𝑃↑𝑆) ∈ ℤ ∧ 1 ∈ ℕ) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) | |
22 | 19, 20, 21 | sylancl 586 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → ((𝑃↑𝑆) ∥ 1 → (𝑃↑𝑆) ≤ 1)) |
23 | 14, 22 | mpd 15 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ 1) |
24 | 16 | nncnd 12279 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℂ) |
25 | 24 | exp0d 14176 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑0) = 1) |
26 | 23, 25 | breqtrrd 5175 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑃↑𝑆) ≤ (𝑃↑0)) |
27 | 16 | nnred 12278 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑃 ∈ ℝ) |
28 | 17 | nn0zd 12636 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℤ) |
29 | 0zd 12622 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 0 ∈ ℤ) | |
30 | eluz2gt1 12959 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
31 | 30 | adantr 480 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 1 < 𝑃) |
32 | 27, 28, 29, 31 | leexp2d 14287 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ (𝑃↑𝑆) ≤ (𝑃↑0))) |
33 | 26, 32 | mpbird 257 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ≤ 0) |
34 | 10 | simpld 494 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ ℕ0) |
35 | 7, 34 | sylan2 593 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 ∈ ℕ0) |
36 | nn0le0eq0 12551 | . . 3 ⊢ (𝑆 ∈ ℕ0 → (𝑆 ≤ 0 ↔ 𝑆 = 0)) | |
37 | 35, 36 | syl 17 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → (𝑆 ≤ 0 ↔ 𝑆 = 0)) |
38 | 33, 37 | mpbid 232 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 = 1) → 𝑆 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 {crab 3432 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 supcsup 9477 ℝcr 11151 0cc0 11152 1c1 11153 < clt 11292 ≤ cle 11293 ℕcn 12263 2c2 12318 ℕ0cn0 12523 ℤcz 12610 ℤ≥cuz 12875 ↑cexp 14098 ∥ cdvds 16286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fl 13828 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 |
This theorem is referenced by: pczpre 16880 pc1 16888 |
Copyright terms: Public domain | W3C validator |