MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval2 Structured version   Visualization version   GIF version

Theorem psgnprfval2 19462
Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval2 (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1

Proof of Theorem psgnprfval2
StepHypRef Expression
1 prex 5428 . . . . 5 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
21snid 4660 . . . 4 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 2⟩, ⟨2, 1⟩}}
3 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
43fveq2i 6894 . . . . . 6 (pmTrsp‘𝐷) = (pmTrsp‘{1, 2})
54rneqi 5933 . . . . 5 ran (pmTrsp‘𝐷) = ran (pmTrsp‘{1, 2})
6 pmtrprfvalrn 19427 . . . . 5 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
75, 6eqtri 2755 . . . 4 ran (pmTrsp‘𝐷) = {{⟨1, 2⟩, ⟨2, 1⟩}}
82, 7eleqtrri 2827 . . 3 {⟨1, 2⟩, ⟨2, 1⟩} ∈ ran (pmTrsp‘𝐷)
9 psgnprfval.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
108, 9eleqtrri 2827 . 2 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑇
11 psgnprfval.g . . 3 𝐺 = (SymGrp‘𝐷)
12 psgnprfval.n . . 3 𝑁 = (pmSgn‘𝐷)
1311, 9, 12psgnpmtr 19449 . 2 ({⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑇 → (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1)
1410, 13ax-mp 5 1 (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  {csn 4624  {cpr 4626  cop 4630  ran crn 5673  cfv 6542  1c1 11125  -cneg 11461  2c2 12283  Basecbs 17165  SymGrpcsymg 19305  pmTrspcpmtr 19380  pmSgncpsgn 19428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9910  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-xnn0 12561  df-z 12575  df-uz 12839  df-rp 12993  df-fz 13503  df-fzo 13646  df-seq 13985  df-exp 14045  df-hash 14308  df-word 14483  df-lsw 14531  df-concat 14539  df-s1 14564  df-substr 14609  df-pfx 14639  df-splice 14718  df-reverse 14727  df-s2 14817  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-tset 17237  df-0g 17408  df-gsum 17409  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-mhm 18725  df-submnd 18726  df-efmnd 18806  df-grp 18878  df-minusg 18879  df-subg 19062  df-ghm 19152  df-gim 19197  df-oppg 19281  df-symg 19306  df-pmtr 19381  df-psgn 19430
This theorem is referenced by:  m2detleiblem1  22500  m2detleiblem6  22502
  Copyright terms: Public domain W3C validator