| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval2 | Structured version Visualization version GIF version | ||
| Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval2 | ⊢ (𝑁‘{〈1, 2〉, 〈2, 1〉}) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5377 | . . . . 5 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ V | |
| 2 | 1 | snid 4614 | . . . 4 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ {{〈1, 2〉, 〈2, 1〉}} |
| 3 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 4 | 3 | fveq2i 6831 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{1, 2}) |
| 5 | 4 | rneqi 5881 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran (pmTrsp‘{1, 2}) |
| 6 | pmtrprfvalrn 19402 | . . . . 5 ⊢ ran (pmTrsp‘{1, 2}) = {{〈1, 2〉, 〈2, 1〉}} | |
| 7 | 5, 6 | eqtri 2756 | . . . 4 ⊢ ran (pmTrsp‘𝐷) = {{〈1, 2〉, 〈2, 1〉}} |
| 8 | 2, 7 | eleqtrri 2832 | . . 3 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ ran (pmTrsp‘𝐷) |
| 9 | psgnprfval.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 10 | 8, 9 | eleqtrri 2832 | . 2 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ 𝑇 |
| 11 | psgnprfval.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 12 | psgnprfval.n | . . 3 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 13 | 11, 9, 12 | psgnpmtr 19424 | . 2 ⊢ ({〈1, 2〉, 〈2, 1〉} ∈ 𝑇 → (𝑁‘{〈1, 2〉, 〈2, 1〉}) = -1) |
| 14 | 10, 13 | ax-mp 5 | 1 ⊢ (𝑁‘{〈1, 2〉, 〈2, 1〉}) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {csn 4575 {cpr 4577 〈cop 4581 ran crn 5620 ‘cfv 6486 1c1 11014 -cneg 11352 2c2 12187 Basecbs 17122 SymGrpcsymg 19283 pmTrspcpmtr 19355 pmSgncpsgn 19403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-splice 14659 df-reverse 14668 df-s2 14757 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-tset 17182 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-efmnd 18779 df-grp 18851 df-minusg 18852 df-subg 19038 df-ghm 19127 df-gim 19173 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 |
| This theorem is referenced by: m2detleiblem1 22540 m2detleiblem6 22542 |
| Copyright terms: Public domain | W3C validator |