![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnprfval2 | Structured version Visualization version GIF version |
Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval2 | ⊢ (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5428 | . . . . 5 ⊢ {⟨1, 2⟩, ⟨2, 1⟩} ∈ V | |
2 | 1 | snid 4660 | . . . 4 ⊢ {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 2⟩, ⟨2, 1⟩}} |
3 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
4 | 3 | fveq2i 6894 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{1, 2}) |
5 | 4 | rneqi 5933 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran (pmTrsp‘{1, 2}) |
6 | pmtrprfvalrn 19427 | . . . . 5 ⊢ ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}} | |
7 | 5, 6 | eqtri 2755 | . . . 4 ⊢ ran (pmTrsp‘𝐷) = {{⟨1, 2⟩, ⟨2, 1⟩}} |
8 | 2, 7 | eleqtrri 2827 | . . 3 ⊢ {⟨1, 2⟩, ⟨2, 1⟩} ∈ ran (pmTrsp‘𝐷) |
9 | psgnprfval.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
10 | 8, 9 | eleqtrri 2827 | . 2 ⊢ {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑇 |
11 | psgnprfval.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐷) | |
12 | psgnprfval.n | . . 3 ⊢ 𝑁 = (pmSgn‘𝐷) | |
13 | 11, 9, 12 | psgnpmtr 19449 | . 2 ⊢ ({⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑇 → (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1) |
14 | 10, 13 | ax-mp 5 | 1 ⊢ (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 {csn 4624 {cpr 4626 ⟨cop 4630 ran crn 5673 ‘cfv 6542 1c1 11125 -cneg 11461 2c2 12283 Basecbs 17165 SymGrpcsymg 19305 pmTrspcpmtr 19380 pmSgncpsgn 19428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-xor 1506 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-fzo 13646 df-seq 13985 df-exp 14045 df-hash 14308 df-word 14483 df-lsw 14531 df-concat 14539 df-s1 14564 df-substr 14609 df-pfx 14639 df-splice 14718 df-reverse 14727 df-s2 14817 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-tset 17237 df-0g 17408 df-gsum 17409 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-mhm 18725 df-submnd 18726 df-efmnd 18806 df-grp 18878 df-minusg 18879 df-subg 19062 df-ghm 19152 df-gim 19197 df-oppg 19281 df-symg 19306 df-pmtr 19381 df-psgn 19430 |
This theorem is referenced by: m2detleiblem1 22500 m2detleiblem6 22502 |
Copyright terms: Public domain | W3C validator |