![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsmulrfval | Structured version Visualization version GIF version |
Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsmulrval.t | ⊢ · = (.r‘𝑌) |
prdsmulrfval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
prdsmulrfval | ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . . 4 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsbasmpt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt.r | . . . 4 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
6 | prdsplusgval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | prdsplusgval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | prdsmulrval.t | . . . 4 ⊢ · = (.r‘𝑌) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | prdsmulrval 17482 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
10 | 9 | fveq1d 6892 | . 2 ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))‘𝐽)) |
11 | prdsmulrfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
12 | 2fveq3 6895 | . . . . 5 ⊢ (𝑥 = 𝐽 → (.r‘(𝑅‘𝑥)) = (.r‘(𝑅‘𝐽))) | |
13 | fveq2 6890 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝐹‘𝑥) = (𝐹‘𝐽)) | |
14 | fveq2 6890 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝐺‘𝑥) = (𝐺‘𝐽)) | |
15 | 12, 13, 14 | oveq123d 7434 | . . . 4 ⊢ (𝑥 = 𝐽 → ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
16 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) | |
17 | ovex 7446 | . . . 4 ⊢ ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽)) ∈ V | |
18 | 15, 16, 17 | fvmpt 6998 | . . 3 ⊢ (𝐽 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
20 | 10, 19 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5226 Fn wfn 6538 ‘cfv 6543 (class class class)co 7413 Basecbs 17205 .rcmulr 17259 Xscprds 17452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9475 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-struct 17141 df-slot 17176 df-ndx 17188 df-base 17206 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-hom 17282 df-cco 17283 df-prds 17454 |
This theorem is referenced by: prdsrngd 20152 prdsringd 20293 |
Copyright terms: Public domain | W3C validator |