MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmulrfval Structured version   Visualization version   GIF version

Theorem prdsmulrfval 17490
Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsmulrval.t · = (.r𝑌)
prdsmulrfval.j (𝜑𝐽𝐼)
Assertion
Ref Expression
prdsmulrfval (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)))

Proof of Theorem prdsmulrfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . . 4 𝑌 = (𝑆Xs𝑅)
2 prdsbasmpt.b . . . 4 𝐵 = (Base‘𝑌)
3 prdsbasmpt.s . . . 4 (𝜑𝑆𝑉)
4 prdsbasmpt.i . . . 4 (𝜑𝐼𝑊)
5 prdsbasmpt.r . . . 4 (𝜑𝑅 Fn 𝐼)
6 prdsplusgval.f . . . 4 (𝜑𝐹𝐵)
7 prdsplusgval.g . . . 4 (𝜑𝐺𝐵)
8 prdsmulrval.t . . . 4 · = (.r𝑌)
91, 2, 3, 4, 5, 6, 7, 8prdsmulrval 17489 . . 3 (𝜑 → (𝐹 · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))))
109fveq1d 6878 . 2 (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)))‘𝐽))
11 prdsmulrfval.j . . 3 (𝜑𝐽𝐼)
12 2fveq3 6881 . . . . 5 (𝑥 = 𝐽 → (.r‘(𝑅𝑥)) = (.r‘(𝑅𝐽)))
13 fveq2 6876 . . . . 5 (𝑥 = 𝐽 → (𝐹𝑥) = (𝐹𝐽))
14 fveq2 6876 . . . . 5 (𝑥 = 𝐽 → (𝐺𝑥) = (𝐺𝐽))
1512, 13, 14oveq123d 7426 . . . 4 (𝑥 = 𝐽 → ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)) = ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)))
16 eqid 2735 . . . 4 (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)))
17 ovex 7438 . . . 4 ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)) ∈ V
1815, 16, 17fvmpt 6986 . . 3 (𝐽𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)))
1911, 18syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥)(.r‘(𝑅𝑥))(𝐺𝑥)))‘𝐽) = ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)))
2010, 19eqtrd 2770 1 (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹𝐽)(.r‘(𝑅𝐽))(𝐺𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cmpt 5201   Fn wfn 6526  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Xscprds 17459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-prds 17461
This theorem is referenced by:  prdsrngd  20136  prdsringd  20281
  Copyright terms: Public domain W3C validator