Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsmulrfval | Structured version Visualization version GIF version |
Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsbasmpt.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsbasmpt.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsbasmpt.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
prdsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsmulrval.t | ⊢ · = (.r‘𝑌) |
prdsmulrfval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
prdsmulrfval | ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . . 4 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsbasmpt.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsbasmpt.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | prdsbasmpt.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | prdsbasmpt.r | . . . 4 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
6 | prdsplusgval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | prdsplusgval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
8 | prdsmulrval.t | . . . 4 ⊢ · = (.r‘𝑌) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | prdsmulrval 17130 | . . 3 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
10 | 9 | fveq1d 6763 | . 2 ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))‘𝐽)) |
11 | prdsmulrfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
12 | 2fveq3 6766 | . . . . 5 ⊢ (𝑥 = 𝐽 → (.r‘(𝑅‘𝑥)) = (.r‘(𝑅‘𝐽))) | |
13 | fveq2 6761 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝐹‘𝑥) = (𝐹‘𝐽)) | |
14 | fveq2 6761 | . . . . 5 ⊢ (𝑥 = 𝐽 → (𝐺‘𝑥) = (𝐺‘𝐽)) | |
15 | 12, 13, 14 | oveq123d 7281 | . . . 4 ⊢ (𝑥 = 𝐽 → ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
16 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥))) | |
17 | ovex 7293 | . . . 4 ⊢ ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽)) ∈ V | |
18 | 15, 16, 17 | fvmpt 6862 | . . 3 ⊢ (𝐽 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
20 | 10, 19 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5158 Fn wfn 6418 ‘cfv 6423 (class class class)co 7260 Basecbs 16856 .rcmulr 16907 Xscprds 17100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-er 8461 df-map 8580 df-ixp 8649 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-sup 9147 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-7 11987 df-8 11988 df-9 11989 df-n0 12180 df-z 12266 df-dec 12383 df-uz 12528 df-fz 13185 df-struct 16792 df-slot 16827 df-ndx 16839 df-base 16857 df-plusg 16919 df-mulr 16920 df-sca 16922 df-vsca 16923 df-ip 16924 df-tset 16925 df-ple 16926 df-ds 16928 df-hom 16930 df-cco 16931 df-prds 17102 |
This theorem is referenced by: prdsringd 19795 |
Copyright terms: Public domain | W3C validator |