Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prdsvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication of a single coordinate in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y | ⊢ 𝑌 = (𝑆Xs𝑅) |
prdsbasmpt.b | ⊢ 𝐵 = (Base‘𝑌) |
prdsvscaval.t | ⊢ · = ( ·𝑠 ‘𝑌) |
prdsvscaval.k | ⊢ 𝐾 = (Base‘𝑆) |
prdsvscaval.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
prdsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
prdsvscaval.r | ⊢ (𝜑 → 𝑅 Fn 𝐼) |
prdsvscaval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐾) |
prdsvscaval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
prdsvscafval.j | ⊢ (𝜑 → 𝐽 ∈ 𝐼) |
Ref | Expression |
---|---|
prdsvscafval | ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = (𝐹( ·𝑠 ‘(𝑅‘𝐽))(𝐺‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y | . . 3 ⊢ 𝑌 = (𝑆Xs𝑅) | |
2 | prdsbasmpt.b | . . 3 ⊢ 𝐵 = (Base‘𝑌) | |
3 | prdsvscaval.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑌) | |
4 | prdsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
5 | prdsvscaval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
6 | prdsvscaval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
7 | prdsvscaval.r | . . 3 ⊢ (𝜑 → 𝑅 Fn 𝐼) | |
8 | prdsvscaval.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐾) | |
9 | prdsvscaval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | prdsvscaval 17107 | . 2 ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)))) |
11 | 2fveq3 6761 | . . . 4 ⊢ (𝑥 = 𝐽 → ( ·𝑠 ‘(𝑅‘𝑥)) = ( ·𝑠 ‘(𝑅‘𝐽))) | |
12 | eqidd 2739 | . . . 4 ⊢ (𝑥 = 𝐽 → 𝐹 = 𝐹) | |
13 | fveq2 6756 | . . . 4 ⊢ (𝑥 = 𝐽 → (𝐺‘𝑥) = (𝐺‘𝐽)) | |
14 | 11, 12, 13 | oveq123d 7276 | . . 3 ⊢ (𝑥 = 𝐽 → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) = (𝐹( ·𝑠 ‘(𝑅‘𝐽))(𝐺‘𝐽))) |
15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐽) → (𝐹( ·𝑠 ‘(𝑅‘𝑥))(𝐺‘𝑥)) = (𝐹( ·𝑠 ‘(𝑅‘𝐽))(𝐺‘𝐽))) |
16 | prdsvscafval.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝐼) | |
17 | ovexd 7290 | . 2 ⊢ (𝜑 → (𝐹( ·𝑠 ‘(𝑅‘𝐽))(𝐺‘𝐽)) ∈ V) | |
18 | 10, 15, 16, 17 | fvmptd 6864 | 1 ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = (𝐹( ·𝑠 ‘(𝑅‘𝐽))(𝐺‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ·𝑠 cvsca 16892 Xscprds 17073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-prds 17075 |
This theorem is referenced by: prdslmodd 20146 dsmmlss 20861 |
Copyright terms: Public domain | W3C validator |