Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  primrootsunit Structured version   Visualization version   GIF version

Theorem primrootsunit 42214
Description: Primitive roots have left inverses. (Contributed by metakunt, 25-Apr-2025.)
Hypotheses
Ref Expression
primrootsunit.1 (𝜑𝑅 ∈ CMnd)
primrootsunit.2 (𝜑𝐾 ∈ ℕ)
primrootsunit.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
Assertion
Ref Expression
primrootsunit (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
Distinct variable group:   𝑅,𝑎,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐾(𝑖,𝑎)

Proof of Theorem primrootsunit
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 primrootsunit.1 . 2 (𝜑𝑅 ∈ CMnd)
2 primrootsunit.2 . 2 (𝜑𝐾 ∈ ℕ)
3 primrootsunit.3 . . 3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
4 nfv 1915 . . . . 5 𝑗(𝑖(+g𝑅)𝑎) = (0g𝑅)
5 nfv 1915 . . . . 5 𝑖(𝑗(+g𝑅)𝑎) = (0g𝑅)
6 oveq1 7361 . . . . . 6 (𝑖 = 𝑗 → (𝑖(+g𝑅)𝑎) = (𝑗(+g𝑅)𝑎))
76eqeq1d 2735 . . . . 5 (𝑖 = 𝑗 → ((𝑖(+g𝑅)𝑎) = (0g𝑅) ↔ (𝑗(+g𝑅)𝑎) = (0g𝑅)))
84, 5, 7cbvrexw 3276 . . . 4 (∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅) ↔ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g𝑅)𝑎) = (0g𝑅))
98rabbii 3401 . . 3 {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)} = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g𝑅)𝑎) = (0g𝑅)}
103, 9eqtri 2756 . 2 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑗 ∈ (Base‘𝑅)(𝑗(+g𝑅)𝑎) = (0g𝑅)}
111, 2, 10primrootsunit1 42213 1 (𝜑 → ((𝑅 PrimRoots 𝐾) = ((𝑅s 𝑈) PrimRoots 𝐾) ∧ (𝑅s 𝑈) ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  cfv 6488  (class class class)co 7354  cn 12134  Basecbs 17124  s cress 17145  +gcplusg 17165  0gc0g 17347  CMndccmn 19696  Abelcabl 19697   PrimRoots cprimroots 42207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-seq 13913  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-grp 18853  df-minusg 18854  df-mulg 18985  df-cmn 19698  df-abl 19699  df-primroots 42208
This theorem is referenced by:  primrootscoprmpow  42215  primrootscoprbij  42218  primrootspoweq0  42222  aks6d1c6lem4  42289  aks6d1c6isolem1  42290  aks6d1c6isolem2  42291  aks6d1c6lem5  42293
  Copyright terms: Public domain W3C validator