MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmind Structured version   Visualization version   GIF version

Theorem prmind 16657
Description: Perform induction over the multiplicative structure of โ„•. If a property ๐œ‘(๐‘ฅ) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
prmind.1 (๐‘ฅ = 1 โ†’ (๐œ‘ โ†” ๐œ“))
prmind.2 (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))
prmind.3 (๐‘ฅ = ๐‘ง โ†’ (๐œ‘ โ†” ๐œƒ))
prmind.4 (๐‘ฅ = (๐‘ฆ ยท ๐‘ง) โ†’ (๐œ‘ โ†” ๐œ))
prmind.5 (๐‘ฅ = ๐ด โ†’ (๐œ‘ โ†” ๐œ‚))
prmind.6 ๐œ“
prmind.7 (๐‘ฅ โˆˆ โ„™ โ†’ ๐œ‘)
prmind.8 ((๐‘ฆ โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ง โˆˆ (โ„คโ‰ฅโ€˜2)) โ†’ ((๐œ’ โˆง ๐œƒ) โ†’ ๐œ))
Assertion
Ref Expression
prmind (๐ด โˆˆ โ„• โ†’ ๐œ‚)
Distinct variable groups:   ๐‘ฅ,๐‘ฆ   ๐‘ฅ,๐ด   ๐‘ฅ,๐‘ง,๐œ’   ๐œ‚,๐‘ฅ   ๐œ,๐‘ฅ   ๐œƒ,๐‘ฅ   ๐‘ฆ,๐‘ง,๐œ‘
Allowed substitution hints:   ๐œ‘(๐‘ฅ)   ๐œ“(๐‘ฅ,๐‘ฆ,๐‘ง)   ๐œ’(๐‘ฆ)   ๐œƒ(๐‘ฆ,๐‘ง)   ๐œ(๐‘ฆ,๐‘ง)   ๐œ‚(๐‘ฆ,๐‘ง)   ๐ด(๐‘ฆ,๐‘ง)

Proof of Theorem prmind
StepHypRef Expression
1 prmind.1 . 2 (๐‘ฅ = 1 โ†’ (๐œ‘ โ†” ๐œ“))
2 prmind.2 . 2 (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))
3 prmind.3 . 2 (๐‘ฅ = ๐‘ง โ†’ (๐œ‘ โ†” ๐œƒ))
4 prmind.4 . 2 (๐‘ฅ = (๐‘ฆ ยท ๐‘ง) โ†’ (๐œ‘ โ†” ๐œ))
5 prmind.5 . 2 (๐‘ฅ = ๐ด โ†’ (๐œ‘ โ†” ๐œ‚))
6 prmind.6 . 2 ๐œ“
7 prmind.7 . . 3 (๐‘ฅ โˆˆ โ„™ โ†’ ๐œ‘)
87adantr 480 . 2 ((๐‘ฅ โˆˆ โ„™ โˆง โˆ€๐‘ฆ โˆˆ (1...(๐‘ฅ โˆ’ 1))๐œ’) โ†’ ๐œ‘)
9 prmind.8 . 2 ((๐‘ฆ โˆˆ (โ„คโ‰ฅโ€˜2) โˆง ๐‘ง โˆˆ (โ„คโ‰ฅโ€˜2)) โ†’ ((๐œ’ โˆง ๐œƒ) โ†’ ๐œ))
101, 2, 3, 4, 5, 6, 8, 9prmind2 16656 1 (๐ด โˆˆ โ„• โ†’ ๐œ‚)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1534   โˆˆ wcel 2099  โˆ€wral 3058  โ€˜cfv 6548  (class class class)co 7420  1c1 11140   ยท cmul 11144   โˆ’ cmin 11475  โ„•cn 12243  2c2 12298  โ„คโ‰ฅcuz 12853  ...cfz 13517  โ„™cprime 16642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-prm 16643
This theorem is referenced by:  exprmfct  16675  lgsquad2lem2  27331  2sqlem6  27369  ostthlem2  27574  fmtnofac2  46909
  Copyright terms: Public domain W3C validator