MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwselbas Structured version   Visualization version   GIF version

Theorem pwselbas 16756
Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
pwselbas.v 𝑉 = (Base‘𝑌)
pwselbas.r (𝜑𝑅𝑊)
pwselbas.i (𝜑𝐼𝑍)
pwselbas.x (𝜑𝑋𝑉)
Assertion
Ref Expression
pwselbas (𝜑𝑋:𝐼𝐵)

Proof of Theorem pwselbas
StepHypRef Expression
1 pwselbas.x . 2 (𝜑𝑋𝑉)
2 pwselbas.r . . 3 (𝜑𝑅𝑊)
3 pwselbas.i . . 3 (𝜑𝐼𝑍)
4 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
5 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
6 pwselbas.v . . . 4 𝑉 = (Base‘𝑌)
74, 5, 6pwselbasb 16755 . . 3 ((𝑅𝑊𝐼𝑍) → (𝑋𝑉𝑋:𝐼𝐵))
82, 3, 7syl2anc 586 . 2 (𝜑 → (𝑋𝑉𝑋:𝐼𝐵))
91, 8mpbid 234 1 (𝜑𝑋:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wf 6345  cfv 6349  (class class class)co 7150  Basecbs 16477  s cpws 16714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-prds 16715  df-pws 16717
This theorem is referenced by:  pwsplusgval  16757  pwsmulrval  16758  pwsle  16759  pwsleval  16760  pwsvscafval  16761  pwsvscaval  16762  pwsco1mhm  17990  pwsco2mhm  17991  pwsinvg  18206  pwssub  18207  mpff  20311  fveval1fvcl  20490  evl1addd  20498  evl1subd  20499  evl1muld  20500  pf1f  20507  pf1mpf  20509  ply1remlem  24750  ply1rem  24751  fta1glem1  24753  fta1glem2  24754  fta1g  24755  fta1blem  24756  plypf1  24796  lgsqrlem2  25917  lgsqrlem3  25918  selvcl  39131  pwssplit4  39682  idomrootle  39788
  Copyright terms: Public domain W3C validator