![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwselbas | Structured version Visualization version GIF version |
Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
pwselbas.v | ⊢ 𝑉 = (Base‘𝑌) |
pwselbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
pwselbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
pwselbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
pwselbas | ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwselbas.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | pwselbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
3 | pwselbas.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
4 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | pwselbas.v | . . . 4 ⊢ 𝑉 = (Base‘𝑌) | |
7 | 4, 5, 6 | pwselbasb 17371 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍) → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) |
8 | 2, 3, 7 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 Basecbs 17084 ↑s cpws 17329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8649 df-map 8768 df-ixp 8837 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-sup 9379 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-2 12217 df-3 12218 df-4 12219 df-5 12220 df-6 12221 df-7 12222 df-8 12223 df-9 12224 df-n0 12415 df-z 12501 df-dec 12620 df-uz 12765 df-fz 13426 df-struct 17020 df-slot 17055 df-ndx 17067 df-base 17085 df-plusg 17147 df-mulr 17148 df-sca 17150 df-vsca 17151 df-ip 17152 df-tset 17153 df-ple 17154 df-ds 17156 df-hom 17158 df-cco 17159 df-prds 17330 df-pws 17332 |
This theorem is referenced by: pwsplusgval 17373 pwsmulrval 17374 pwsle 17375 pwsleval 17376 pwsvscafval 17377 pwsvscaval 17378 pwsco1mhm 18643 pwsco2mhm 18644 pwsinvg 18861 pwssub 18862 pwspjmhmmgpd 20044 mpff 21517 fveval1fvcl 21702 evl1addd 21710 evl1subd 21711 evl1muld 21712 pf1f 21719 pf1mpf 21721 ply1remlem 25530 ply1rem 25531 fta1glem1 25533 fta1glem2 25534 fta1g 25535 fta1blem 25536 plypf1 25576 lgsqrlem2 26698 lgsqrlem3 26699 evls1fpws 32274 elirng 32363 irngss 32364 irngnzply1lem 32367 irngnzply1 32368 pwsgprod 40735 evlsbagval 40751 evlsaddval 40753 evlsmulval 40754 evladdval 40756 evlmulval 40757 selvcl 40764 mhphf 40774 pwssplit4 41419 idomrootle 41525 |
Copyright terms: Public domain | W3C validator |