| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwselbas | Structured version Visualization version GIF version | ||
| Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
| pwselbas.v | ⊢ 𝑉 = (Base‘𝑌) |
| pwselbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| pwselbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| pwselbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| pwselbas | ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwselbas.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | pwselbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 3 | pwselbas.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 4 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 5 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | pwselbas.v | . . . 4 ⊢ 𝑉 = (Base‘𝑌) | |
| 7 | 4, 5, 6 | pwselbasb 17394 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍) → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) |
| 8 | 2, 3, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↑s cpws 17352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-prds 17353 df-pws 17355 |
| This theorem is referenced by: pwsplusgval 17396 pwsmulrval 17397 pwsle 17398 pwsleval 17399 pwsvscafval 17400 pwsvscaval 17401 pwsco1mhm 18742 pwsco2mhm 18743 pwsinvg 18968 pwssub 18969 pwspjmhmmgpd 20248 mpff 22040 fveval1fvcl 22249 evl1addd 22257 evl1subd 22258 evl1muld 22259 pf1f 22266 pf1mpf 22268 evls1fpws 22285 ply1remlem 26098 ply1rem 26099 fta1glem1 26101 fta1glem2 26102 fta1g 26103 fta1blem 26104 idomrootle 26106 plypf1 26145 lgsqrlem2 27286 lgsqrlem3 27287 evls1fvf 33532 evl1fvf 33533 elirng 33720 irngss 33721 irngnzply1lem 33724 irngnzply1 33725 pwsgprod 42662 evlscl 42676 evlsvvval 42681 evlsaddval 42686 evlsmulval 42687 evlcl 42690 evladdval 42693 evlmulval 42694 selvcl 42701 pwssplit4 43206 |
| Copyright terms: Public domain | W3C validator |