MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwselbas Structured version   Visualization version   GIF version

Theorem pwselbas 17459
Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
pwselbas.v 𝑉 = (Base‘𝑌)
pwselbas.r (𝜑𝑅𝑊)
pwselbas.i (𝜑𝐼𝑍)
pwselbas.x (𝜑𝑋𝑉)
Assertion
Ref Expression
pwselbas (𝜑𝑋:𝐼𝐵)

Proof of Theorem pwselbas
StepHypRef Expression
1 pwselbas.x . 2 (𝜑𝑋𝑉)
2 pwselbas.r . . 3 (𝜑𝑅𝑊)
3 pwselbas.i . . 3 (𝜑𝐼𝑍)
4 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
5 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
6 pwselbas.v . . . 4 𝑉 = (Base‘𝑌)
74, 5, 6pwselbasb 17458 . . 3 ((𝑅𝑊𝐼𝑍) → (𝑋𝑉𝑋:𝐼𝐵))
82, 3, 7syl2anc 584 . 2 (𝜑 → (𝑋𝑉𝑋:𝐼𝐵))
91, 8mpbid 232 1 (𝜑𝑋:𝐼𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cpws 17416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-prds 17417  df-pws 17419
This theorem is referenced by:  pwsplusgval  17460  pwsmulrval  17461  pwsle  17462  pwsleval  17463  pwsvscafval  17464  pwsvscaval  17465  pwsco1mhm  18766  pwsco2mhm  18767  pwsinvg  18992  pwssub  18993  pwspjmhmmgpd  20244  mpff  22018  fveval1fvcl  22227  evl1addd  22235  evl1subd  22236  evl1muld  22237  pf1f  22244  pf1mpf  22246  evls1fpws  22263  ply1remlem  26077  ply1rem  26078  fta1glem1  26080  fta1glem2  26081  fta1g  26082  fta1blem  26083  idomrootle  26085  plypf1  26124  lgsqrlem2  27265  lgsqrlem3  27266  evls1fvf  33538  evl1fvf  33539  elirng  33688  irngss  33689  irngnzply1lem  33692  irngnzply1  33693  pwsgprod  42539  evlscl  42553  evlsvvval  42558  evlsaddval  42563  evlsmulval  42564  evlcl  42567  evladdval  42570  evlmulval  42571  selvcl  42578  pwssplit4  43085
  Copyright terms: Public domain W3C validator