![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwselbas | Structured version Visualization version GIF version |
Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
Ref | Expression |
---|---|
pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
pwselbas.v | ⊢ 𝑉 = (Base‘𝑌) |
pwselbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
pwselbas.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
pwselbas.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
pwselbas | ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwselbas.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | pwselbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
3 | pwselbas.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
4 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | pwselbas.v | . . . 4 ⊢ 𝑉 = (Base‘𝑌) | |
7 | 4, 5, 6 | pwselbasb 17479 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍) → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) |
8 | 2, 3, 7 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 Basecbs 17189 ↑s cpws 17437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-map 8855 df-ixp 8925 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-uz 12863 df-fz 13527 df-struct 17125 df-slot 17160 df-ndx 17172 df-base 17190 df-plusg 17255 df-mulr 17256 df-sca 17258 df-vsca 17259 df-ip 17260 df-tset 17261 df-ple 17262 df-ds 17264 df-hom 17266 df-cco 17267 df-prds 17438 df-pws 17440 |
This theorem is referenced by: pwsplusgval 17481 pwsmulrval 17482 pwsle 17483 pwsleval 17484 pwsvscafval 17485 pwsvscaval 17486 pwsco1mhm 18798 pwsco2mhm 18799 pwsinvg 19023 pwssub 19024 pwspjmhmmgpd 20278 mpff 22067 fveval1fvcl 22271 evl1addd 22279 evl1subd 22280 evl1muld 22281 pf1f 22288 pf1mpf 22290 evls1fpws 22307 ply1remlem 26127 ply1rem 26128 fta1glem1 26130 fta1glem2 26131 fta1g 26132 fta1blem 26133 idomrootle 26135 plypf1 26174 lgsqrlem2 27308 lgsqrlem3 27309 evls1fvf 33291 elirng 33405 irngss 33406 irngnzply1lem 33409 irngnzply1 33410 pwsgprod 41814 evlscl 41840 evlsvvval 41845 evlsaddval 41850 evlsmulval 41851 evlcl 41854 evladdval 41857 evlmulval 41858 selvcl 41865 pwssplit4 42562 |
Copyright terms: Public domain | W3C validator |