![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qmuldeneqnum | Structured version Visualization version GIF version |
Description: Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qmuldeneqnum | ⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qeqnumdivden 16703 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
2 | 1 | oveq1d 7429 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (((numer‘𝐴) / (denom‘𝐴)) · (denom‘𝐴))) |
3 | qnumcl 16697 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
4 | 3 | zcnd 12683 | . . 3 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ) |
5 | qdencl 16698 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
6 | 5 | nncnd 12244 | . . 3 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
7 | 5 | nnne0d 12278 | . . 3 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ≠ 0) |
8 | 4, 6, 7 | divcan1d 12007 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴)) · (denom‘𝐴)) = (numer‘𝐴)) |
9 | 2, 8 | eqtrd 2767 | 1 ⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 · cmul 11129 / cdiv 11887 ℚcq 12948 numercnumer 16690 denomcdenom 16691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-q 12949 df-rp 12993 df-fl 13775 df-mod 13853 df-seq 13985 df-exp 14045 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-dvds 16217 df-gcd 16455 df-numer 16692 df-denom 16693 |
This theorem is referenced by: qnumgt0 16707 oexpreposd 41793 |
Copyright terms: Public domain | W3C validator |