MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divnumden Structured version   Visualization version   GIF version

Theorem divnumden 16450
Description: Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nnz 12342 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
32adantl 482 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
4 nnne0 12007 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
54neneqd 2950 . . . . . . 7 (𝐵 ∈ ℕ → ¬ 𝐵 = 0)
65adantl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
76intnand 489 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
8 gcdn0cl 16207 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
91, 3, 7, 8syl21anc 835 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
10 gcddvds 16208 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
112, 10sylan2 593 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
12 gcddiv 16257 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
131, 3, 9, 11, 12syl31anc 1372 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
149nncnd 11989 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
159nnne0d 12023 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
1614, 15dividd 11749 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
1713, 16eqtr3d 2782 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
18 zcn 12324 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1918adantr 481 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
20 nncn 11981 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2120adantl 482 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
224adantl 482 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
23 divcan7 11684 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))) = (𝐴 / 𝐵))
2423eqcomd 2746 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))))
2519, 21, 22, 14, 15, 24syl122anc 1378 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))))
26 znq 12691 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
2711simpld 495 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
28 gcdcl 16211 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2928nn0zd 12423 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
302, 29sylan2 593 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
31 dvdsval2 15964 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
3230, 15, 1, 31syl3anc 1370 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
3327, 32mpbid 231 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
3411simprd 496 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
35 simpr 485 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
36 nndivdvds 15970 . . . . 5 ((𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ))
3735, 9, 36syl2anc 584 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ))
3834, 37mpbid 231 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
39 qnumdenbi 16446 . . 3 (((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ) → ((((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵)))) ↔ ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))))
4026, 33, 38, 39syl3anc 1370 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵)))) ↔ ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))))
4117, 25, 40mpbi2and 709 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  0cc0 10872  1c1 10873   / cdiv 11632  cn 11973  cz 12319  cq 12687  cdvds 15961   gcd cgcd 16199  numercnumer 16435  denomcdenom 16436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-numer 16437  df-denom 16438
This theorem is referenced by:  divdenle  16451  divnumden2  31128  qqhval2lem  31927
  Copyright terms: Public domain W3C validator