MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs00bd Structured version   Visualization version   GIF version

Theorem abs00bd 14631
Description: If a complex number is zero, its absolute value is zero. Converse of abs00d 14786. One-way deduction form of abs00 14629. (Contributed by David Moews, 28-Feb-2017.)
Hypothesis
Ref Expression
abs00bd.1 (𝜑𝐴 = 0)
Assertion
Ref Expression
abs00bd (𝜑 → (abs‘𝐴) = 0)

Proof of Theorem abs00bd
StepHypRef Expression
1 abs00bd.1 . 2 (𝜑𝐴 = 0)
2 0cn 10611 . . . 4 0 ∈ ℂ
31, 2eqeltrdi 2919 . . 3 (𝜑𝐴 ∈ ℂ)
43abs00ad 14630 . 2 (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
51, 4mpbird 259 1 (𝜑 → (abs‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cfv 6331  cc 10513  0cc0 10515  abscabs 14573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-n0 11877  df-z 11961  df-uz 12223  df-rp 12369  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575
This theorem is referenced by:  lcmgcd  15929  blcvx  23382  mulc1cncf  23489  rrxdstprj1  23992  dvlip  24575  c1lip1  24579  dveq0  24582  dv11cn  24583  ftc1lem5  24622  dvradcnv  24995  abelthlem2  25006  abelthlem8  25013  abscxp2  25263  cxpcn3lem  25315  abscxpbnd  25321  chordthmlem3  25399  rlimcnp  25530  dchrabs2  25825  dchrisumlem3  26054  pntrsumbnd2  26130  siii  28615  nmbdfnlbi  29811  nmcfnlbi  29814  knoppndvlem13  33871  poimirlem29  34962  ftc1cnnc  35005  pellexlem6  39568  congabseq  39708  dvconstbi  40821  binomcxplemnn0  40836  dvdivbd  42356  dvbdfbdioolem2  42362  ioodvbdlimc1lem1  42364
  Copyright terms: Public domain W3C validator