| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abs00bd | Structured version Visualization version GIF version | ||
| Description: If a complex number is zero, its absolute value is zero. Converse of abs00d 15465. One-way deduction form of abs00 15308. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| abs00bd.1 | ⊢ (𝜑 → 𝐴 = 0) |
| Ref | Expression |
|---|---|
| abs00bd | ⊢ (𝜑 → (abs‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abs00bd.1 | . 2 ⊢ (𝜑 → 𝐴 = 0) | |
| 2 | 0cn 11227 | . . . 4 ⊢ 0 ∈ ℂ | |
| 3 | 1, 2 | eqeltrdi 2842 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 3 | abs00ad 15309 | . 2 ⊢ (𝜑 → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → (abs‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ‘cfv 6531 ℂcc 11127 0cc0 11129 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: lcmgcd 16626 blcvx 24737 mulc1cncf 24849 rrxdstprj1 25361 dvlip 25950 c1lip1 25954 dveq0 25957 dv11cn 25958 ftc1lem5 25999 dvradcnv 26382 abelthlem2 26394 abelthlem8 26401 abscxp2 26654 cxpcn3lem 26709 abscxpbnd 26715 chordthmlem3 26796 rlimcnp 26927 dchrabs2 27225 dchrisumlem3 27454 pntrsumbnd2 27530 siii 30834 nmbdfnlbi 32030 nmcfnlbi 32033 constrrtcc 33769 knoppndvlem13 36542 poimirlem29 37673 ftc1cnnc 37716 pellexlem6 42857 congabseq 42998 reabssgn 43660 dvconstbi 44358 binomcxplemnn0 44373 dvdivbd 45952 dvbdfbdioolem2 45958 ioodvbdlimc1lem1 45960 |
| Copyright terms: Public domain | W3C validator |