MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem8 Structured version   Visualization version   GIF version

Theorem rpnnen2lem8 15569
Description: Lemma for rpnnen2 15574. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem8 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑀 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem8
StepHypRef Expression
1 nnuz 12273 . 2 ℕ = (ℤ‘1)
2 eqid 2801 . 2 (ℤ𝑀) = (ℤ𝑀)
3 simpr 488 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
4 eqidd 2802 . 2 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = ((𝐹𝐴)‘𝑘))
5 rpnnen2.1 . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
65rpnnen2lem2 15563 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
76adantr 484 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (𝐹𝐴):ℕ⟶ℝ)
87ffvelrnda 6832 . . 3 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
98recnd 10662 . 2 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℂ)
10 1nn 11640 . . . 4 1 ∈ ℕ
115rpnnen2lem5 15566 . . . 4 ((𝐴 ⊆ ℕ ∧ 1 ∈ ℕ) → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
1210, 11mpan2 690 . . 3 (𝐴 ⊆ ℕ → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
1312adantr 484 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
141, 2, 3, 4, 9, 13isumsplit 15190 1 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝐹𝐴)‘𝑘) = (Σ𝑘 ∈ (1...(𝑀 − 1))((𝐹𝐴)‘𝑘) + Σ𝑘 ∈ (ℤ𝑀)((𝐹𝐴)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wss 3884  ifcif 4428  𝒫 cpw 4500  cmpt 5113  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   + caddc 10533  cmin 10863   / cdiv 11290  cn 11629  3c3 11685  cuz 12235  ...cfz 12889  seqcseq 13368  cexp 13429  cli 14836  Σcsu 15037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038
This theorem is referenced by:  rpnnen2lem10  15571
  Copyright terms: Public domain W3C validator