Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimgtxrmpt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpimgtxrmpt.x | ⊢ Ⅎ𝑥𝜑 |
smfpimgtxrmpt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimgtxrmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
smfpimgtxrmpt.f | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfpimgtxrmpt.l | ⊢ (𝜑 → 𝐿 ∈ ℝ*) |
Ref | Expression |
---|---|
smfpimgtxrmpt | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5182 | . . . . . 6 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | nfdm 5860 | . . . . 5 ⊢ Ⅎ𝑥dom (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑦dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑦 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) | |
5 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝐿 | |
6 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥 < | |
7 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
8 | 1, 7 | nffv 6784 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
9 | 5, 6, 8 | nfbr 5121 | . . . . 5 ⊢ Ⅎ𝑥 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
10 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
11 | 10 | breq2d 5086 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
12 | 2, 3, 4, 9, 11 | cbvrabw 3424 | . . . 4 ⊢ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)} |
13 | 12 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)}) |
14 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐵) | |
15 | smfpimgtxrmpt.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
16 | smfpimgtxrmpt.f | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
17 | eqid 2738 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
18 | smfpimgtxrmpt.l | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℝ*) | |
19 | 14, 15, 16, 17, 18 | smfpimgtxr 44315 | . . 3 ⊢ (𝜑 → {𝑦 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
20 | 13, 19 | eqeltrd 2839 | . 2 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
21 | smfpimgtxrmpt.x | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
22 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
23 | smfpimgtxrmpt.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
24 | 21, 22, 23 | dmmptdf 42763 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
25 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
26 | 2, 25 | rabeqf 3415 | . . . . 5 ⊢ (dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
27 | 24, 26 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
28 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
29 | 28, 23 | fvmpt2d 6888 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
30 | 29 | breq2d 5086 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 𝐿 < 𝐵)) |
31 | 21, 30 | rabbida 3409 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) |
32 | eqidd 2739 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵}) | |
33 | 27, 31, 32 | 3eqtrrd 2783 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} = {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
34 | 24 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
35 | 34 | oveq2d 7291 | . . 3 ⊢ (𝜑 → (𝑆 ↾t 𝐴) = (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
36 | 33, 35 | eleq12d 2833 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴) ↔ {𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ 𝐿 < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} ∈ (𝑆 ↾t dom (𝑥 ∈ 𝐴 ↦ 𝐵)))) |
37 | 20, 36 | mpbird 256 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵} ∈ (𝑆 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ↦ cmpt 5157 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ↾t crest 17131 SAlgcsalg 43849 SMblFncsmblfn 44233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-ioo 13083 df-ico 13085 df-fl 13512 df-rest 17133 df-salg 43850 df-smblfn 44234 |
This theorem is referenced by: smfpimioompt 44320 |
Copyright terms: Public domain | W3C validator |