Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndistlt Structured version   Visualization version   GIF version

Theorem rrndistlt 42932
Description: Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrndistlt.i (𝜑𝐼 ∈ Fin)
rrndistlt.z (𝜑𝐼 ≠ ∅)
rrndistlt.n 𝑁 = (♯‘𝐼)
rrndistlt.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
rrndistlt.y (𝜑𝑌 ∈ (ℝ ↑m 𝐼))
rrndistlt.l ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
rrndistlt.e (𝜑𝐸 ∈ ℝ+)
rrndistlt.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrndistlt (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐼   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝐷(𝑖)   𝑁(𝑖)

Proof of Theorem rrndistlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrndistlt.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 rrndistlt.z . . . . 5 (𝜑𝐼 ≠ ∅)
3 rrndistlt.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
4 elmapi 8411 . . . . . . . . . . 11 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋:𝐼⟶ℝ)
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑋:𝐼⟶ℝ)
6 ax-resscn 10583 . . . . . . . . . . 11 ℝ ⊆ ℂ
76a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
85, 7fssd 6502 . . . . . . . . 9 (𝜑𝑋:𝐼⟶ℂ)
98ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
10 rrndistlt.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (ℝ ↑m 𝐼))
11 elmapi 8411 . . . . . . . . . . 11 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . . . 10 (𝜑𝑌:𝐼⟶ℝ)
1312, 7fssd 6502 . . . . . . . . 9 (𝜑𝑌:𝐼⟶ℂ)
1413ffvelrnda 6828 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℂ)
159, 14subcld 10986 . . . . . . 7 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℂ)
1615abscld 14788 . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ)
1716resqcld 13607 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) ∈ ℝ)
18 rrndistlt.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
1918rpred 12419 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
2019resqcld 13607 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℝ)
2120adantr 484 . . . . 5 ((𝜑𝑖𝐼) → (𝐸↑2) ∈ ℝ)
22 rrndistlt.l . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
2315absge0d 14796 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖))))
2419adantr 484 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
2518adantr 484 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ+)
2625rpge0d 12423 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ 𝐸)
27 lt2sq 13494 . . . . . . 7 ((((abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ ∧ 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖)))) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸)) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2816, 23, 24, 26, 27syl22anc 837 . . . . . 6 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2922, 28mpbid 235 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2))
301, 2, 17, 21, 29fsumlt 15147 . . . 4 (𝜑 → Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2))
315ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
3212ffvelrnda 6828 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℝ)
3331, 32resubcld 11057 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ)
34 absresq 14654 . . . . . . . 8 (((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3635eqcomd 2804 . . . . . 6 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) = ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
3736sumeq2dv 15052 . . . . 5 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) = Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
386, 20sseldi 3913 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
39 fsumconst 15137 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝐸↑2) ∈ ℂ) → Σ𝑖𝐼 (𝐸↑2) = ((♯‘𝐼) · (𝐸↑2)))
401, 38, 39syl2anc 587 . . . . . 6 (𝜑 → Σ𝑖𝐼 (𝐸↑2) = ((♯‘𝐼) · (𝐸↑2)))
41 rrndistlt.n . . . . . . . . 9 𝑁 = (♯‘𝐼)
42 eqcom 2805 . . . . . . . . 9 (𝑁 = (♯‘𝐼) ↔ (♯‘𝐼) = 𝑁)
4341, 42mpbi 233 . . . . . . . 8 (♯‘𝐼) = 𝑁
4443oveq1i 7145 . . . . . . 7 ((♯‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2))
4544a1i 11 . . . . . 6 (𝜑 → ((♯‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2)))
4640, 45eqtr2d 2834 . . . . 5 (𝜑 → (𝑁 · (𝐸↑2)) = Σ𝑖𝐼 (𝐸↑2))
4737, 46breq12d 5043 . . . 4 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2)))
4830, 47mpbird 260 . . 3 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)))
49 nfv 1915 . . . . 5 𝑖𝜑
5033resqcld 13607 . . . . 5 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5149, 1, 50fsumreclf 42218 . . . 4 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5233sqge0d 13608 . . . . 5 ((𝜑𝑖𝐼) → 0 ≤ (((𝑋𝑖) − (𝑌𝑖))↑2))
531, 50, 52fsumge0 15142 . . . 4 (𝜑 → 0 ≤ Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
54 hashcl 13713 . . . . . . . 8 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
551, 54syl 17 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℕ0)
5641, 55eqeltrid 2894 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5756nn0red 11944 . . . . 5 (𝜑𝑁 ∈ ℝ)
5857, 20remulcld 10660 . . . 4 (𝜑 → (𝑁 · (𝐸↑2)) ∈ ℝ)
5956nn0ge0d 11946 . . . . 5 (𝜑 → 0 ≤ 𝑁)
6019sqge0d 13608 . . . . 5 (𝜑 → 0 ≤ (𝐸↑2))
6157, 20, 59, 60mulge0d 11206 . . . 4 (𝜑 → 0 ≤ (𝑁 · (𝐸↑2)))
6251, 53, 58, 61sqrtltd 14779 . . 3 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
6348, 62mpbid 235 . 2 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2))))
64 rrndistlt.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
6564a1i 11 . . . . 5 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
66 eqid 2798 . . . . . . 7 (ℝ^‘𝐼) = (ℝ^‘𝐼)
67 eqid 2798 . . . . . . 7 (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼)
6866, 67rrxdsfi 24015 . . . . . 6 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
691, 68syl 17 . . . . 5 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
7065, 69eqtrd 2833 . . . 4 (𝜑𝐷 = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
71 fveq1 6644 . . . . . . . . . 10 (𝑓 = 𝑋 → (𝑓𝑖) = (𝑋𝑖))
7271adantr 484 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑖) = (𝑋𝑖))
73 fveq1 6644 . . . . . . . . . 10 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
7473adantl 485 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑔𝑖) = (𝑌𝑖))
7572, 74oveq12d 7153 . . . . . . . 8 ((𝑓 = 𝑋𝑔 = 𝑌) → ((𝑓𝑖) − (𝑔𝑖)) = ((𝑋𝑖) − (𝑌𝑖)))
7675oveq1d 7150 . . . . . . 7 ((𝑓 = 𝑋𝑔 = 𝑌) → (((𝑓𝑖) − (𝑔𝑖))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
7776sumeq2sdv 15053 . . . . . 6 ((𝑓 = 𝑋𝑔 = 𝑌) → Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2) = Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
7877fveq2d 6649 . . . . 5 ((𝑓 = 𝑋𝑔 = 𝑌) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
7978adantl 485 . . . 4 ((𝜑 ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
8051, 53resqrtcld 14769 . . . 4 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) ∈ ℝ)
8170, 79, 3, 10, 80ovmpod 7281 . . 3 (𝜑 → (𝑋𝐷𝑌) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
82 sqrtmul 14611 . . . . 5 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2))) → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8357, 59, 20, 60, 82syl22anc 837 . . . 4 (𝜑 → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8418rpge0d 12423 . . . . . 6 (𝜑 → 0 ≤ 𝐸)
8519, 84sqrtsqd 14771 . . . . 5 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
8685oveq2d 7151 . . . 4 (𝜑 → ((√‘𝑁) · (√‘(𝐸↑2))) = ((√‘𝑁) · 𝐸))
8783, 86eqtr2d 2834 . . 3 (𝜑 → ((√‘𝑁) · 𝐸) = (√‘(𝑁 · (𝐸↑2))))
8881, 87breq12d 5043 . 2 (𝜑 → ((𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
8963, 88mpbird 260 1 (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wss 3881  c0 4243   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Fincfn 8492  cc 10524  cr 10525  0cc0 10526   · cmul 10531   < clt 10664  cle 10665  cmin 10859  2c2 11680  0cn0 11885  +crp 12377  cexp 13425  chash 13686  csqrt 14584  abscabs 14585  Σcsu 15034  distcds 16566  ℝ^crrx 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-refld 20294  df-dsmm 20421  df-frlm 20436  df-nm 23189  df-tng 23191  df-tcph 23774  df-rrx 23989
This theorem is referenced by:  qndenserrnbllem  42936
  Copyright terms: Public domain W3C validator