Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndistlt Structured version   Visualization version   GIF version

Theorem rrndistlt 43721
Description: Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rrndistlt.i (𝜑𝐼 ∈ Fin)
rrndistlt.z (𝜑𝐼 ≠ ∅)
rrndistlt.n 𝑁 = (♯‘𝐼)
rrndistlt.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
rrndistlt.y (𝜑𝑌 ∈ (ℝ ↑m 𝐼))
rrndistlt.l ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
rrndistlt.e (𝜑𝐸 ∈ ℝ+)
rrndistlt.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrndistlt (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐼   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝐷(𝑖)   𝑁(𝑖)

Proof of Theorem rrndistlt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrndistlt.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 rrndistlt.z . . . . 5 (𝜑𝐼 ≠ ∅)
3 rrndistlt.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
4 elmapi 8595 . . . . . . . . . . 11 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋:𝐼⟶ℝ)
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑋:𝐼⟶ℝ)
6 ax-resscn 10859 . . . . . . . . . . 11 ℝ ⊆ ℂ
76a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
85, 7fssd 6602 . . . . . . . . 9 (𝜑𝑋:𝐼⟶ℂ)
98ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
10 rrndistlt.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (ℝ ↑m 𝐼))
11 elmapi 8595 . . . . . . . . . . 11 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . . . 10 (𝜑𝑌:𝐼⟶ℝ)
1312, 7fssd 6602 . . . . . . . . 9 (𝜑𝑌:𝐼⟶ℂ)
1413ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℂ)
159, 14subcld 11262 . . . . . . 7 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℂ)
1615abscld 15076 . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ)
1716resqcld 13893 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) ∈ ℝ)
18 rrndistlt.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
1918rpred 12701 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
2019resqcld 13893 . . . . . 6 (𝜑 → (𝐸↑2) ∈ ℝ)
2120adantr 480 . . . . 5 ((𝜑𝑖𝐼) → (𝐸↑2) ∈ ℝ)
22 rrndistlt.l . . . . . 6 ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)
2315absge0d 15084 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖))))
2419adantr 480 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
2518adantr 480 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ+)
2625rpge0d 12705 . . . . . . 7 ((𝜑𝑖𝐼) → 0 ≤ 𝐸)
27 lt2sq 13780 . . . . . . 7 ((((abs‘((𝑋𝑖) − (𝑌𝑖))) ∈ ℝ ∧ 0 ≤ (abs‘((𝑋𝑖) − (𝑌𝑖)))) ∧ (𝐸 ∈ ℝ ∧ 0 ≤ 𝐸)) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2816, 23, 24, 26, 27syl22anc 835 . . . . . 6 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸 ↔ ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2)))
2922, 28mpbid 231 . . . . 5 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < (𝐸↑2))
301, 2, 17, 21, 29fsumlt 15440 . . . 4 (𝜑 → Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2))
315ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
3212ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑖𝐼) → (𝑌𝑖) ∈ ℝ)
3331, 32resubcld 11333 . . . . . . . 8 ((𝜑𝑖𝐼) → ((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ)
34 absresq 14942 . . . . . . . 8 (((𝑋𝑖) − (𝑌𝑖)) ∈ ℝ → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑖𝐼) → ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
3635eqcomd 2744 . . . . . 6 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) = ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
3736sumeq2dv 15343 . . . . 5 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) = Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2))
386, 20sselid 3915 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
39 fsumconst 15430 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝐸↑2) ∈ ℂ) → Σ𝑖𝐼 (𝐸↑2) = ((♯‘𝐼) · (𝐸↑2)))
401, 38, 39syl2anc 583 . . . . . 6 (𝜑 → Σ𝑖𝐼 (𝐸↑2) = ((♯‘𝐼) · (𝐸↑2)))
41 rrndistlt.n . . . . . . . . 9 𝑁 = (♯‘𝐼)
42 eqcom 2745 . . . . . . . . 9 (𝑁 = (♯‘𝐼) ↔ (♯‘𝐼) = 𝑁)
4341, 42mpbi 229 . . . . . . . 8 (♯‘𝐼) = 𝑁
4443oveq1i 7265 . . . . . . 7 ((♯‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2))
4544a1i 11 . . . . . 6 (𝜑 → ((♯‘𝐼) · (𝐸↑2)) = (𝑁 · (𝐸↑2)))
4640, 45eqtr2d 2779 . . . . 5 (𝜑 → (𝑁 · (𝐸↑2)) = Σ𝑖𝐼 (𝐸↑2))
4737, 46breq12d 5083 . . . 4 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ Σ𝑖𝐼 ((abs‘((𝑋𝑖) − (𝑌𝑖)))↑2) < Σ𝑖𝐼 (𝐸↑2)))
4830, 47mpbird 256 . . 3 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)))
49 nfv 1918 . . . . 5 𝑖𝜑
5033resqcld 13893 . . . . 5 ((𝜑𝑖𝐼) → (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5149, 1, 50fsumreclf 43007 . . . 4 (𝜑 → Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) ∈ ℝ)
5233sqge0d 13894 . . . . 5 ((𝜑𝑖𝐼) → 0 ≤ (((𝑋𝑖) − (𝑌𝑖))↑2))
531, 50, 52fsumge0 15435 . . . 4 (𝜑 → 0 ≤ Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
54 hashcl 13999 . . . . . . . 8 (𝐼 ∈ Fin → (♯‘𝐼) ∈ ℕ0)
551, 54syl 17 . . . . . . 7 (𝜑 → (♯‘𝐼) ∈ ℕ0)
5641, 55eqeltrid 2843 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5756nn0red 12224 . . . . 5 (𝜑𝑁 ∈ ℝ)
5857, 20remulcld 10936 . . . 4 (𝜑 → (𝑁 · (𝐸↑2)) ∈ ℝ)
5956nn0ge0d 12226 . . . . 5 (𝜑 → 0 ≤ 𝑁)
6019sqge0d 13894 . . . . 5 (𝜑 → 0 ≤ (𝐸↑2))
6157, 20, 59, 60mulge0d 11482 . . . 4 (𝜑 → 0 ≤ (𝑁 · (𝐸↑2)))
6251, 53, 58, 61sqrtltd 15067 . . 3 (𝜑 → (Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2) < (𝑁 · (𝐸↑2)) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
6348, 62mpbid 231 . 2 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2))))
64 rrndistlt.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
6564a1i 11 . . . . 5 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
66 eqid 2738 . . . . . . 7 (ℝ^‘𝐼) = (ℝ^‘𝐼)
67 eqid 2738 . . . . . . 7 (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼)
6866, 67rrxdsfi 24480 . . . . . 6 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
691, 68syl 17 . . . . 5 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
7065, 69eqtrd 2778 . . . 4 (𝜑𝐷 = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2))))
71 fveq1 6755 . . . . . . . . . 10 (𝑓 = 𝑋 → (𝑓𝑖) = (𝑋𝑖))
7271adantr 480 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑖) = (𝑋𝑖))
73 fveq1 6755 . . . . . . . . . 10 (𝑔 = 𝑌 → (𝑔𝑖) = (𝑌𝑖))
7473adantl 481 . . . . . . . . 9 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑔𝑖) = (𝑌𝑖))
7572, 74oveq12d 7273 . . . . . . . 8 ((𝑓 = 𝑋𝑔 = 𝑌) → ((𝑓𝑖) − (𝑔𝑖)) = ((𝑋𝑖) − (𝑌𝑖)))
7675oveq1d 7270 . . . . . . 7 ((𝑓 = 𝑋𝑔 = 𝑌) → (((𝑓𝑖) − (𝑔𝑖))↑2) = (((𝑋𝑖) − (𝑌𝑖))↑2))
7776sumeq2sdv 15344 . . . . . 6 ((𝑓 = 𝑋𝑔 = 𝑌) → Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2) = Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2))
7877fveq2d 6760 . . . . 5 ((𝑓 = 𝑋𝑔 = 𝑌) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
7978adantl 481 . . . 4 ((𝜑 ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (√‘Σ𝑖𝐼 (((𝑓𝑖) − (𝑔𝑖))↑2)) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
8051, 53resqrtcld 15057 . . . 4 (𝜑 → (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) ∈ ℝ)
8170, 79, 3, 10, 80ovmpod 7403 . . 3 (𝜑 → (𝑋𝐷𝑌) = (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)))
82 sqrtmul 14899 . . . . 5 (((𝑁 ∈ ℝ ∧ 0 ≤ 𝑁) ∧ ((𝐸↑2) ∈ ℝ ∧ 0 ≤ (𝐸↑2))) → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8357, 59, 20, 60, 82syl22anc 835 . . . 4 (𝜑 → (√‘(𝑁 · (𝐸↑2))) = ((√‘𝑁) · (√‘(𝐸↑2))))
8418rpge0d 12705 . . . . . 6 (𝜑 → 0 ≤ 𝐸)
8519, 84sqrtsqd 15059 . . . . 5 (𝜑 → (√‘(𝐸↑2)) = 𝐸)
8685oveq2d 7271 . . . 4 (𝜑 → ((√‘𝑁) · (√‘(𝐸↑2))) = ((√‘𝑁) · 𝐸))
8783, 86eqtr2d 2779 . . 3 (𝜑 → ((√‘𝑁) · 𝐸) = (√‘(𝑁 · (𝐸↑2))))
8881, 87breq12d 5083 . 2 (𝜑 → ((𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸) ↔ (√‘Σ𝑖𝐼 (((𝑋𝑖) − (𝑌𝑖))↑2)) < (√‘(𝑁 · (𝐸↑2)))))
8963, 88mpbird 256 1 (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wss 3883  c0 4253   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Fincfn 8691  cc 10800  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941  cmin 11135  2c2 11958  0cn0 12163  +crp 12659  cexp 13710  chash 13972  csqrt 14872  abscabs 14873  Σcsu 15325  distcds 16897  ℝ^crrx 24452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454
This theorem is referenced by:  qndenserrnbllem  43725
  Copyright terms: Public domain W3C validator