![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgsub | Structured version Visualization version GIF version |
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subgsubcl.p | ⊢ − = (-g‘𝐺) |
subgsub.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
subgsub.n | ⊢ 𝑁 = (-g‘𝐻) |
Ref | Expression |
---|---|
subgsub | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgsub.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2730 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | ressplusg 17239 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
4 | 3 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
5 | eqidd 2731 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 = 𝑋) | |
6 | eqid 2730 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
7 | eqid 2730 | . . . . 5 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
8 | 1, 6, 7 | subginv 19049 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) = ((invg‘𝐻)‘𝑌)) |
9 | 8 | 3adant2 1129 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) = ((invg‘𝐻)‘𝑌)) |
10 | 4, 5, 9 | oveq123d 7432 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
11 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
12 | 11 | subgss 19043 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
13 | 12 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
14 | simp2 1135 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
15 | 13, 14 | sseldd 3982 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
16 | simp3 1136 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ 𝑆) | |
17 | 13, 16 | sseldd 3982 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐺)) |
18 | subgsubcl.p | . . . 4 ⊢ − = (-g‘𝐺) | |
19 | 11, 2, 6, 18 | grpsubval 18906 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
20 | 15, 17, 19 | syl2anc 582 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
21 | 1 | subgbas 19046 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
22 | 21 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
23 | 14, 22 | eleqtrd 2833 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
24 | 16, 22 | eleqtrd 2833 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐻)) |
25 | eqid 2730 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
26 | eqid 2730 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
27 | subgsub.n | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
28 | 25, 26, 7, 27 | grpsubval 18906 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐻) ∧ 𝑌 ∈ (Base‘𝐻)) → (𝑋𝑁𝑌) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
29 | 23, 24, 28 | syl2anc 582 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋𝑁𝑌) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
30 | 10, 20, 29 | 3eqtr4d 2780 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 ‘cfv 6542 (class class class)co 7411 Basecbs 17148 ↾s cress 17177 +gcplusg 17201 invgcminusg 18856 -gcsg 18857 SubGrpcsubg 19036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 |
This theorem is referenced by: rngqiprngimfo 21060 rngqiprngfulem4 21073 zringsub 21226 zringsubgval 21241 zndvds 21324 resubgval 21381 frlmsubgval 21539 scmatsgrp1 22244 subgngp 24364 clmsub 24827 irngss 33040 qqhucn 33270 |
Copyright terms: Public domain | W3C validator |