MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgsub Structured version   Visualization version   GIF version

Theorem subgsub 18864
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
subgsubcl.p = (-g𝐺)
subgsub.h 𝐻 = (𝐺s 𝑆)
subgsub.n 𝑁 = (-g𝐻)
Assertion
Ref Expression
subgsub ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))

Proof of Theorem subgsub
StepHypRef Expression
1 subgsub.h . . . . 5 𝐻 = (𝐺s 𝑆)
2 eqid 2737 . . . . 5 (+g𝐺) = (+g𝐺)
31, 2ressplusg 17098 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
433ad2ant1 1133 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (+g𝐺) = (+g𝐻))
5 eqidd 2738 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 = 𝑋)
6 eqid 2737 . . . . 5 (invg𝐺) = (invg𝐺)
7 eqid 2737 . . . . 5 (invg𝐻) = (invg𝐻)
81, 6, 7subginv 18859 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌𝑆) → ((invg𝐺)‘𝑌) = ((invg𝐻)‘𝑌))
983adant2 1131 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → ((invg𝐺)‘𝑌) = ((invg𝐻)‘𝑌))
104, 5, 9oveq123d 7363 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
11 eqid 2737 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1211subgss 18853 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
13123ad2ant1 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
14 simp2 1137 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋𝑆)
1513, 14sseldd 3937 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘𝐺))
16 simp3 1138 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌𝑆)
1713, 16sseldd 3937 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘𝐺))
18 subgsubcl.p . . . 4 = (-g𝐺)
1911, 2, 6, 18grpsubval 18722 . . 3 ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2015, 17, 19syl2anc 585 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
211subgbas 18856 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
22213ad2ant1 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑆 = (Base‘𝐻))
2314, 22eleqtrd 2840 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑋 ∈ (Base‘𝐻))
2416, 22eleqtrd 2840 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → 𝑌 ∈ (Base‘𝐻))
25 eqid 2737 . . . 4 (Base‘𝐻) = (Base‘𝐻)
26 eqid 2737 . . . 4 (+g𝐻) = (+g𝐻)
27 subgsub.n . . . 4 𝑁 = (-g𝐻)
2825, 26, 7, 27grpsubval 18722 . . 3 ((𝑋 ∈ (Base‘𝐻) ∧ 𝑌 ∈ (Base‘𝐻)) → (𝑋𝑁𝑌) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
2923, 24, 28syl2anc 585 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋𝑁𝑌) = (𝑋(+g𝐻)((invg𝐻)‘𝑌)))
3010, 20, 293eqtr4d 2787 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wss 3902  cfv 6484  (class class class)co 7342  Basecbs 17010  s cress 17039  +gcplusg 17060  invgcminusg 18675  -gcsg 18676  SubGrpcsubg 18846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-sbg 18679  df-subg 18849
This theorem is referenced by:  zringsubgval  20798  zndvds  20863  resubgval  20920  frlmsubgval  21078  scmatsgrp1  21777  subgngp  23897  clmsub  24349  qqhucn  32238
  Copyright terms: Public domain W3C validator