![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgsub | Structured version Visualization version GIF version |
Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subgsubcl.p | ⊢ − = (-g‘𝐺) |
subgsub.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
subgsub.n | ⊢ 𝑁 = (-g‘𝐻) |
Ref | Expression |
---|---|
subgsub | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgsub.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2778 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | ressplusg 16385 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
4 | 3 | 3ad2ant1 1124 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
5 | eqidd 2779 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 = 𝑋) | |
6 | eqid 2778 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
7 | eqid 2778 | . . . . 5 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
8 | 1, 6, 7 | subginv 17985 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) = ((invg‘𝐻)‘𝑌)) |
9 | 8 | 3adant2 1122 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) = ((invg‘𝐻)‘𝑌)) |
10 | 4, 5, 9 | oveq123d 6943 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
11 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
12 | 11 | subgss 17979 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
13 | 12 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
14 | simp2 1128 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
15 | 13, 14 | sseldd 3822 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
16 | simp3 1129 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ 𝑆) | |
17 | 13, 16 | sseldd 3822 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐺)) |
18 | subgsubcl.p | . . . 4 ⊢ − = (-g‘𝐺) | |
19 | 11, 2, 6, 18 | grpsubval 17852 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
20 | 15, 17, 19 | syl2anc 579 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
21 | 1 | subgbas 17982 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
22 | 21 | 3ad2ant1 1124 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
23 | 14, 22 | eleqtrd 2861 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
24 | 16, 22 | eleqtrd 2861 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐻)) |
25 | eqid 2778 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
26 | eqid 2778 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
27 | subgsub.n | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
28 | 25, 26, 7, 27 | grpsubval 17852 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐻) ∧ 𝑌 ∈ (Base‘𝐻)) → (𝑋𝑁𝑌) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
29 | 23, 24, 28 | syl2anc 579 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋𝑁𝑌) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
30 | 10, 20, 29 | 3eqtr4d 2824 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 ↾s cress 16256 +gcplusg 16338 invgcminusg 17810 -gcsg 17811 SubGrpcsubg 17972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 |
This theorem is referenced by: zndvds 20293 resubgval 20352 frlmsubgval 20508 scmatsgrp1 20733 subgngp 22847 clmsub 23287 qqhucn 30634 zringsubgval 43198 |
Copyright terms: Public domain | W3C validator |