| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgsub | Structured version Visualization version GIF version | ||
| Description: The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| subgsubcl.p | ⊢ − = (-g‘𝐺) |
| subgsub.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subgsub.n | ⊢ 𝑁 = (-g‘𝐻) |
| Ref | Expression |
|---|---|
| subgsub | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgsub.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | eqid 2736 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | ressplusg 17310 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
| 5 | eqidd 2737 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 = 𝑋) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 7 | eqid 2736 | . . . . 5 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
| 8 | 1, 6, 7 | subginv 19121 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) = ((invg‘𝐻)‘𝑌)) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((invg‘𝐺)‘𝑌) = ((invg‘𝐻)‘𝑌)) |
| 10 | 4, 5, 9 | oveq123d 7431 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌)) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
| 11 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 12 | 11 | subgss 19115 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 14 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 15 | 13, 14 | sseldd 3964 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ 𝑆) | |
| 17 | 13, 16 | sseldd 3964 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐺)) |
| 18 | subgsubcl.p | . . . 4 ⊢ − = (-g‘𝐺) | |
| 19 | 11, 2, 6, 18 | grpsubval 18973 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐺) ∧ 𝑌 ∈ (Base‘𝐺)) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 20 | 15, 17, 19 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 21 | 1 | subgbas 19118 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
| 23 | 14, 22 | eleqtrd 2837 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
| 24 | 16, 22 | eleqtrd 2837 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → 𝑌 ∈ (Base‘𝐻)) |
| 25 | eqid 2736 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 26 | eqid 2736 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 27 | subgsub.n | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
| 28 | 25, 26, 7, 27 | grpsubval 18973 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐻) ∧ 𝑌 ∈ (Base‘𝐻)) → (𝑋𝑁𝑌) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
| 29 | 23, 24, 28 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋𝑁𝑌) = (𝑋(+g‘𝐻)((invg‘𝐻)‘𝑌))) |
| 30 | 10, 20, 29 | 3eqtr4d 2781 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 invgcminusg 18922 -gcsg 18923 SubGrpcsubg 19108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 |
| This theorem is referenced by: rngqiprngimfo 21267 rngqiprngfulem4 21280 zringsub 21421 zringsubgval 21436 zndvds 21515 resubgval 21574 frlmsubgval 21730 scmatsgrp1 22465 subgngp 24579 clmsub 25036 evls1subd 33590 irngss 33733 2sqr3minply 33819 qqhucn 34028 |
| Copyright terms: Public domain | W3C validator |