![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > swapfida | Structured version Visualization version GIF version |
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfid 48958. (Contributed by Zhi Wang, 8-Oct-2025.) |
Ref | Expression |
---|---|
swapfid.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
swapfid.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
swapfid.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
swapfid.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
swapfid.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
swapfida.b | ⊢ 𝐵 = (Base‘𝑆) |
swapfida.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
swapfida.1 | ⊢ 1 = (Id‘𝑆) |
swapfida.i | ⊢ 𝐼 = (Id‘𝑇) |
Ref | Expression |
---|---|
swapfida | ⊢ (𝜑 → ((𝑋𝑃𝑋)‘( 1 ‘𝑋)) = (𝐼‘(𝑂‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swapfid.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | swapfid.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
3 | swapfid.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
4 | swapfid.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
5 | swapfid.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
6 | swapfida.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | swapfida.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
8 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
10 | 3, 8, 9 | xpcbas 18219 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆) |
11 | 7, 10 | eqtr4i 2767 | . . . . 5 ⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
12 | 6, 11 | eleqtrdi 2850 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
13 | xp1st 8042 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑋) ∈ (Base‘𝐶)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑋) ∈ (Base‘𝐶)) |
15 | xp2nd 8043 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑋) ∈ (Base‘𝐷)) | |
16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑋) ∈ (Base‘𝐷)) |
17 | swapfida.1 | . . 3 ⊢ 1 = (Id‘𝑆) | |
18 | swapfida.i | . . 3 ⊢ 𝐼 = (Id‘𝑇) | |
19 | 1, 2, 3, 4, 5, 14, 16, 17, 18 | swapfid 48958 | . 2 ⊢ (𝜑 → ((〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑋), (2nd ‘𝑋)〉)‘( 1 ‘〈(1st ‘𝑋), (2nd ‘𝑋)〉)) = (𝐼‘(𝑂‘〈(1st ‘𝑋), (2nd ‘𝑋)〉))) |
20 | 1st2nd2 8049 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
21 | 12, 20 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
22 | 21, 21 | oveq12d 7447 | . . 3 ⊢ (𝜑 → (𝑋𝑃𝑋) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑋), (2nd ‘𝑋)〉)) |
23 | 21 | fveq2d 6908 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) = ( 1 ‘〈(1st ‘𝑋), (2nd ‘𝑋)〉)) |
24 | 22, 23 | fveq12d 6911 | . 2 ⊢ (𝜑 → ((𝑋𝑃𝑋)‘( 1 ‘𝑋)) = ((〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑋), (2nd ‘𝑋)〉)‘( 1 ‘〈(1st ‘𝑋), (2nd ‘𝑋)〉))) |
25 | 21 | fveq2d 6908 | . . 3 ⊢ (𝜑 → (𝑂‘𝑋) = (𝑂‘〈(1st ‘𝑋), (2nd ‘𝑋)〉)) |
26 | 25 | fveq2d 6908 | . 2 ⊢ (𝜑 → (𝐼‘(𝑂‘𝑋)) = (𝐼‘(𝑂‘〈(1st ‘𝑋), (2nd ‘𝑋)〉))) |
27 | 19, 24, 26 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → ((𝑋𝑃𝑋)‘( 1 ‘𝑋)) = (𝐼‘(𝑂‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4630 × cxp 5681 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 Basecbs 17243 Catccat 17703 Idccid 17704 ×c cxpc 18209 swapFcswapf 48938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-cat 17707 df-cid 17708 df-xpc 18213 df-swapf 48939 |
This theorem is referenced by: swapffunc 48961 |
Copyright terms: Public domain | W3C validator |