Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcid | Structured version Visualization version GIF version |
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpccat.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpccat.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
xpccat.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
xpccat.x | ⊢ 𝑋 = (Base‘𝐶) |
xpccat.y | ⊢ 𝑌 = (Base‘𝐷) |
xpccat.i | ⊢ 𝐼 = (Id‘𝐶) |
xpccat.j | ⊢ 𝐽 = (Id‘𝐷) |
xpcid.1 | ⊢ 1 = (Id‘𝑇) |
xpcid.r | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
xpcid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
Ref | Expression |
---|---|
xpcid | ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7258 | . 2 ⊢ (𝑅 1 𝑆) = ( 1 ‘〈𝑅, 𝑆〉) | |
2 | xpcid.1 | . . . 4 ⊢ 1 = (Id‘𝑇) | |
3 | xpccat.t | . . . . . 6 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
4 | xpccat.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | xpccat.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | xpccat.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐶) | |
7 | xpccat.y | . . . . . 6 ⊢ 𝑌 = (Base‘𝐷) | |
8 | xpccat.i | . . . . . 6 ⊢ 𝐼 = (Id‘𝐶) | |
9 | xpccat.j | . . . . . 6 ⊢ 𝐽 = (Id‘𝐷) | |
10 | 3, 4, 5, 6, 7, 8, 9 | xpccatid 17821 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) |
11 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
12 | 2, 11 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
13 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
14 | 13 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐼‘𝑥) = (𝐼‘𝑅)) |
15 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
16 | 15 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐽‘𝑦) = (𝐽‘𝑆)) |
17 | 14, 16 | opeq12d 4809 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 〈(𝐼‘𝑥), (𝐽‘𝑦)〉 = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
18 | xpcid.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
19 | xpcid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
20 | opex 5373 | . . . 4 ⊢ 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V | |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V) |
22 | 12, 17, 18, 19, 21 | ovmpod 7403 | . 2 ⊢ (𝜑 → (𝑅 1 𝑆) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
23 | 1, 22 | eqtr3id 2793 | 1 ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 Catccat 17290 Idccid 17291 ×c cxpc 17801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-hom 16912 df-cco 16913 df-cat 17294 df-cid 17295 df-xpc 17805 |
This theorem is referenced by: 1stfcl 17830 2ndfcl 17831 prfcl 17836 evlfcl 17856 curf1cl 17862 curfcl 17866 hofcl 17893 |
Copyright terms: Public domain | W3C validator |