![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcid | Structured version Visualization version GIF version |
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpccat.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpccat.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
xpccat.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
xpccat.x | ⊢ 𝑋 = (Base‘𝐶) |
xpccat.y | ⊢ 𝑌 = (Base‘𝐷) |
xpccat.i | ⊢ 𝐼 = (Id‘𝐶) |
xpccat.j | ⊢ 𝐽 = (Id‘𝐷) |
xpcid.1 | ⊢ 1 = (Id‘𝑇) |
xpcid.r | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
xpcid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
Ref | Expression |
---|---|
xpcid | ⊢ (𝜑 → ( 1 ‘⟨𝑅, 𝑆⟩) = ⟨(𝐼‘𝑅), (𝐽‘𝑆)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7423 | . 2 ⊢ (𝑅 1 𝑆) = ( 1 ‘⟨𝑅, 𝑆⟩) | |
2 | xpcid.1 | . . . 4 ⊢ 1 = (Id‘𝑇) | |
3 | xpccat.t | . . . . . 6 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
4 | xpccat.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | xpccat.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | xpccat.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐶) | |
7 | xpccat.y | . . . . . 6 ⊢ 𝑌 = (Base‘𝐷) | |
8 | xpccat.i | . . . . . 6 ⊢ 𝐼 = (Id‘𝐶) | |
9 | xpccat.j | . . . . . 6 ⊢ 𝐽 = (Id‘𝐷) | |
10 | 3, 4, 5, 6, 7, 8, 9 | xpccatid 18178 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨(𝐼‘𝑥), (𝐽‘𝑦)⟩))) |
11 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨(𝐼‘𝑥), (𝐽‘𝑦)⟩)) |
12 | 2, 11 | eqtrid 2780 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨(𝐼‘𝑥), (𝐽‘𝑦)⟩)) |
13 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
14 | 13 | fveq2d 6901 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐼‘𝑥) = (𝐼‘𝑅)) |
15 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
16 | 15 | fveq2d 6901 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐽‘𝑦) = (𝐽‘𝑆)) |
17 | 14, 16 | opeq12d 4882 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → ⟨(𝐼‘𝑥), (𝐽‘𝑦)⟩ = ⟨(𝐼‘𝑅), (𝐽‘𝑆)⟩) |
18 | xpcid.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
19 | xpcid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
20 | opex 5466 | . . . 4 ⊢ ⟨(𝐼‘𝑅), (𝐽‘𝑆)⟩ ∈ V | |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → ⟨(𝐼‘𝑅), (𝐽‘𝑆)⟩ ∈ V) |
22 | 12, 17, 18, 19, 21 | ovmpod 7573 | . 2 ⊢ (𝜑 → (𝑅 1 𝑆) = ⟨(𝐼‘𝑅), (𝐽‘𝑆)⟩) |
23 | 1, 22 | eqtr3id 2782 | 1 ⊢ (𝜑 → ( 1 ‘⟨𝑅, 𝑆⟩) = ⟨(𝐼‘𝑅), (𝐽‘𝑆)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⟨cop 4635 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 Basecbs 17179 Catccat 17643 Idccid 17644 ×c cxpc 18158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-hom 17256 df-cco 17257 df-cat 17647 df-cid 17648 df-xpc 18162 |
This theorem is referenced by: 1stfcl 18187 2ndfcl 18188 prfcl 18193 evlfcl 18213 curf1cl 18219 curfcl 18223 hofcl 18250 |
Copyright terms: Public domain | W3C validator |