MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcid Structured version   Visualization version   GIF version

Theorem xpcid 17430
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpccat.t 𝑇 = (𝐶 ×c 𝐷)
xpccat.c (𝜑𝐶 ∈ Cat)
xpccat.d (𝜑𝐷 ∈ Cat)
xpccat.x 𝑋 = (Base‘𝐶)
xpccat.y 𝑌 = (Base‘𝐷)
xpccat.i 𝐼 = (Id‘𝐶)
xpccat.j 𝐽 = (Id‘𝐷)
xpcid.1 1 = (Id‘𝑇)
xpcid.r (𝜑𝑅𝑋)
xpcid.s (𝜑𝑆𝑌)
Assertion
Ref Expression
xpcid (𝜑 → ( 1 ‘⟨𝑅, 𝑆⟩) = ⟨(𝐼𝑅), (𝐽𝑆)⟩)

Proof of Theorem xpcid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7143 . 2 (𝑅 1 𝑆) = ( 1 ‘⟨𝑅, 𝑆⟩)
2 xpcid.1 . . . 4 1 = (Id‘𝑇)
3 xpccat.t . . . . . 6 𝑇 = (𝐶 ×c 𝐷)
4 xpccat.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 xpccat.d . . . . . 6 (𝜑𝐷 ∈ Cat)
6 xpccat.x . . . . . 6 𝑋 = (Base‘𝐶)
7 xpccat.y . . . . . 6 𝑌 = (Base‘𝐷)
8 xpccat.i . . . . . 6 𝐼 = (Id‘𝐶)
9 xpccat.j . . . . . 6 𝐽 = (Id‘𝐷)
103, 4, 5, 6, 7, 8, 9xpccatid 17429 . . . . 5 (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩)))
1110simprd 499 . . . 4 (𝜑 → (Id‘𝑇) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩))
122, 11syl5eq 2869 . . 3 (𝜑1 = (𝑥𝑋, 𝑦𝑌 ↦ ⟨(𝐼𝑥), (𝐽𝑦)⟩))
13 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑥 = 𝑅)
1413fveq2d 6656 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (𝐼𝑥) = (𝐼𝑅))
15 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → 𝑦 = 𝑆)
1615fveq2d 6656 . . . 4 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → (𝐽𝑦) = (𝐽𝑆))
1714, 16opeq12d 4786 . . 3 ((𝜑 ∧ (𝑥 = 𝑅𝑦 = 𝑆)) → ⟨(𝐼𝑥), (𝐽𝑦)⟩ = ⟨(𝐼𝑅), (𝐽𝑆)⟩)
18 xpcid.r . . 3 (𝜑𝑅𝑋)
19 xpcid.s . . 3 (𝜑𝑆𝑌)
20 opex 5333 . . . 4 ⟨(𝐼𝑅), (𝐽𝑆)⟩ ∈ V
2120a1i 11 . . 3 (𝜑 → ⟨(𝐼𝑅), (𝐽𝑆)⟩ ∈ V)
2212, 17, 18, 19, 21ovmpod 7286 . 2 (𝜑 → (𝑅 1 𝑆) = ⟨(𝐼𝑅), (𝐽𝑆)⟩)
231, 22syl5eqr 2871 1 (𝜑 → ( 1 ‘⟨𝑅, 𝑆⟩) = ⟨(𝐼𝑅), (𝐽𝑆)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  Vcvv 3469  cop 4545  cfv 6334  (class class class)co 7140  cmpo 7142  Basecbs 16474  Catccat 16926  Idccid 16927   ×c cxpc 17409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-hom 16580  df-cco 16581  df-cat 16930  df-cid 16931  df-xpc 17413
This theorem is referenced by:  1stfcl  17438  2ndfcl  17439  prfcl  17444  evlfcl  17463  curf1cl  17469  curfcl  17473  hofcl  17500
  Copyright terms: Public domain W3C validator