| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcid | Structured version Visualization version GIF version | ||
| Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpccat.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpccat.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| xpccat.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| xpccat.x | ⊢ 𝑋 = (Base‘𝐶) |
| xpccat.y | ⊢ 𝑌 = (Base‘𝐷) |
| xpccat.i | ⊢ 𝐼 = (Id‘𝐶) |
| xpccat.j | ⊢ 𝐽 = (Id‘𝐷) |
| xpcid.1 | ⊢ 1 = (Id‘𝑇) |
| xpcid.r | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| xpcid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| xpcid | ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7434 | . 2 ⊢ (𝑅 1 𝑆) = ( 1 ‘〈𝑅, 𝑆〉) | |
| 2 | xpcid.1 | . . . 4 ⊢ 1 = (Id‘𝑇) | |
| 3 | xpccat.t | . . . . . 6 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 4 | xpccat.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | xpccat.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | xpccat.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐶) | |
| 7 | xpccat.y | . . . . . 6 ⊢ 𝑌 = (Base‘𝐷) | |
| 8 | xpccat.i | . . . . . 6 ⊢ 𝐼 = (Id‘𝐶) | |
| 9 | xpccat.j | . . . . . 6 ⊢ 𝐽 = (Id‘𝐷) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | xpccatid 18233 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) |
| 11 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
| 12 | 2, 11 | eqtrid 2789 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
| 13 | simprl 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
| 14 | 13 | fveq2d 6910 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐼‘𝑥) = (𝐼‘𝑅)) |
| 15 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
| 16 | 15 | fveq2d 6910 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐽‘𝑦) = (𝐽‘𝑆)) |
| 17 | 14, 16 | opeq12d 4881 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 〈(𝐼‘𝑥), (𝐽‘𝑦)〉 = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| 18 | xpcid.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
| 19 | xpcid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 20 | opex 5469 | . . . 4 ⊢ 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V) |
| 22 | 12, 17, 18, 19, 21 | ovmpod 7585 | . 2 ⊢ (𝜑 → (𝑅 1 𝑆) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| 23 | 1, 22 | eqtr3id 2791 | 1 ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 〈cop 4632 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17247 Catccat 17707 Idccid 17708 ×c cxpc 18213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-cat 17711 df-cid 17712 df-xpc 18217 |
| This theorem is referenced by: 1stfcl 18242 2ndfcl 18243 prfcl 18248 evlfcl 18267 curf1cl 18273 curfcl 18277 hofcl 18304 swapfid 48985 fucoid 49043 |
| Copyright terms: Public domain | W3C validator |