| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcid | Structured version Visualization version GIF version | ||
| Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpccat.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpccat.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| xpccat.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
| xpccat.x | ⊢ 𝑋 = (Base‘𝐶) |
| xpccat.y | ⊢ 𝑌 = (Base‘𝐷) |
| xpccat.i | ⊢ 𝐼 = (Id‘𝐶) |
| xpccat.j | ⊢ 𝐽 = (Id‘𝐷) |
| xpcid.1 | ⊢ 1 = (Id‘𝑇) |
| xpcid.r | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| xpcid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
| Ref | Expression |
|---|---|
| xpcid | ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7349 | . 2 ⊢ (𝑅 1 𝑆) = ( 1 ‘〈𝑅, 𝑆〉) | |
| 2 | xpcid.1 | . . . 4 ⊢ 1 = (Id‘𝑇) | |
| 3 | xpccat.t | . . . . . 6 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 4 | xpccat.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | xpccat.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
| 6 | xpccat.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐶) | |
| 7 | xpccat.y | . . . . . 6 ⊢ 𝑌 = (Base‘𝐷) | |
| 8 | xpccat.i | . . . . . 6 ⊢ 𝐼 = (Id‘𝐶) | |
| 9 | xpccat.j | . . . . . 6 ⊢ 𝐽 = (Id‘𝐷) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | xpccatid 18091 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) |
| 11 | 10 | simprd 495 | . . . 4 ⊢ (𝜑 → (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
| 12 | 2, 11 | eqtrid 2778 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
| 13 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
| 14 | 13 | fveq2d 6826 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐼‘𝑥) = (𝐼‘𝑅)) |
| 15 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
| 16 | 15 | fveq2d 6826 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐽‘𝑦) = (𝐽‘𝑆)) |
| 17 | 14, 16 | opeq12d 4833 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 〈(𝐼‘𝑥), (𝐽‘𝑦)〉 = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| 18 | xpcid.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
| 19 | xpcid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
| 20 | opex 5404 | . . . 4 ⊢ 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V | |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V) |
| 22 | 12, 17, 18, 19, 21 | ovmpod 7498 | . 2 ⊢ (𝜑 → (𝑅 1 𝑆) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| 23 | 1, 22 | eqtr3id 2780 | 1 ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 Catccat 17567 Idccid 17568 ×c cxpc 18071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-xpc 18075 |
| This theorem is referenced by: 1stfcl 18100 2ndfcl 18101 prfcl 18106 evlfcl 18125 curf1cl 18131 curfcl 18135 hofcl 18162 swapfid 49310 fucoid 49379 |
| Copyright terms: Public domain | W3C validator |