![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcid | Structured version Visualization version GIF version |
Description: The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpccat.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpccat.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
xpccat.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
xpccat.x | ⊢ 𝑋 = (Base‘𝐶) |
xpccat.y | ⊢ 𝑌 = (Base‘𝐷) |
xpccat.i | ⊢ 𝐼 = (Id‘𝐶) |
xpccat.j | ⊢ 𝐽 = (Id‘𝐷) |
xpcid.1 | ⊢ 1 = (Id‘𝑇) |
xpcid.r | ⊢ (𝜑 → 𝑅 ∈ 𝑋) |
xpcid.s | ⊢ (𝜑 → 𝑆 ∈ 𝑌) |
Ref | Expression |
---|---|
xpcid | ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6882 | . 2 ⊢ (𝑅 1 𝑆) = ( 1 ‘〈𝑅, 𝑆〉) | |
2 | xpcid.1 | . . . 4 ⊢ 1 = (Id‘𝑇) | |
3 | xpccat.t | . . . . . 6 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
4 | xpccat.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | xpccat.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
6 | xpccat.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐶) | |
7 | xpccat.y | . . . . . 6 ⊢ 𝑌 = (Base‘𝐷) | |
8 | xpccat.i | . . . . . 6 ⊢ 𝐼 = (Id‘𝐶) | |
9 | xpccat.j | . . . . . 6 ⊢ 𝐽 = (Id‘𝐷) | |
10 | 3, 4, 5, 6, 7, 8, 9 | xpccatid 17142 | . . . . 5 ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) |
11 | 10 | simprd 490 | . . . 4 ⊢ (𝜑 → (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
12 | 2, 11 | syl5eq 2846 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉)) |
13 | simprl 788 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑥 = 𝑅) | |
14 | 13 | fveq2d 6416 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐼‘𝑥) = (𝐼‘𝑅)) |
15 | simprr 790 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 𝑦 = 𝑆) | |
16 | 15 | fveq2d 6416 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → (𝐽‘𝑦) = (𝐽‘𝑆)) |
17 | 14, 16 | opeq12d 4602 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑅 ∧ 𝑦 = 𝑆)) → 〈(𝐼‘𝑥), (𝐽‘𝑦)〉 = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
18 | xpcid.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑋) | |
19 | xpcid.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑌) | |
20 | opex 5124 | . . . 4 ⊢ 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V | |
21 | 20 | a1i 11 | . . 3 ⊢ (𝜑 → 〈(𝐼‘𝑅), (𝐽‘𝑆)〉 ∈ V) |
22 | 12, 17, 18, 19, 21 | ovmpt2d 7023 | . 2 ⊢ (𝜑 → (𝑅 1 𝑆) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
23 | 1, 22 | syl5eqr 2848 | 1 ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3386 〈cop 4375 ‘cfv 6102 (class class class)co 6879 ↦ cmpt2 6881 Basecbs 16183 Catccat 16638 Idccid 16639 ×c cxpc 17122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-hom 16290 df-cco 16291 df-cat 16642 df-cid 16643 df-xpc 17126 |
This theorem is referenced by: 1stfcl 17151 2ndfcl 17152 prfcl 17157 evlfcl 17176 curf1cl 17182 curfcl 17186 hofcl 17213 |
Copyright terms: Public domain | W3C validator |