![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdlen | Structured version Visualization version GIF version |
Description: Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
swrdlen | ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr 〈𝐹, 𝐿〉)) = (𝐿 − 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6901 | . . . . 5 ⊢ (𝑆‘(𝑥 + 𝐹)) ∈ V | |
2 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) | |
3 | 1, 2 | fnmpti 6690 | . . . 4 ⊢ (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿 − 𝐹)) |
4 | swrdval2 14592 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) | |
5 | 4 | fneq1d 6639 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr 〈𝐹, 𝐿〉) Fn (0..^(𝐿 − 𝐹)) ↔ (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿 − 𝐹)))) |
6 | 3, 5 | mpbiri 258 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) Fn (0..^(𝐿 − 𝐹))) |
7 | hashfn 14331 | . . 3 ⊢ ((𝑆 substr 〈𝐹, 𝐿〉) Fn (0..^(𝐿 − 𝐹)) → (♯‘(𝑆 substr 〈𝐹, 𝐿〉)) = (♯‘(0..^(𝐿 − 𝐹)))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr 〈𝐹, 𝐿〉)) = (♯‘(0..^(𝐿 − 𝐹)))) |
9 | fznn0sub 13529 | . . . 4 ⊢ (𝐹 ∈ (0...𝐿) → (𝐿 − 𝐹) ∈ ℕ0) | |
10 | 9 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿 − 𝐹) ∈ ℕ0) |
11 | hashfzo0 14386 | . . 3 ⊢ ((𝐿 − 𝐹) ∈ ℕ0 → (♯‘(0..^(𝐿 − 𝐹))) = (𝐿 − 𝐹)) | |
12 | 10, 11 | syl 17 | . 2 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(0..^(𝐿 − 𝐹))) = (𝐿 − 𝐹)) |
13 | 8, 12 | eqtrd 2773 | 1 ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr 〈𝐹, 𝐿〉)) = (𝐿 − 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 〈cop 4633 ↦ cmpt 5230 Fn wfn 6535 ‘cfv 6540 (class class class)co 7404 0cc0 11106 + caddc 11109 − cmin 11440 ℕ0cn0 12468 ...cfz 13480 ..^cfzo 13623 ♯chash 14286 Word cword 14460 substr csubstr 14586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-substr 14587 |
This theorem is referenced by: swrdf 14596 swrdrlen 14605 swrdlen2 14606 swrds1 14612 ccatswrd 14614 swrdccat2 14615 ccatpfx 14647 swrdswrd 14651 pfxccatin12lem2 14677 pfxccatin12 14679 spllen 14700 cshwlen 14745 cshwidxmod 14749 efgredleme 19604 splfv3 32100 cycpmco2lem3 32265 cycpmco2lem4 32266 cycpmco2lem5 32267 cycpmco2lem6 32268 cycpmco2 32270 revpfxsfxrev 34044 |
Copyright terms: Public domain | W3C validator |