MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdlen Structured version   Visualization version   GIF version

Theorem swrdlen 14637
Description: Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
swrdlen ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))

Proof of Theorem swrdlen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvex 6915 . . . . 5 (𝑆‘(𝑥 + 𝐹)) ∈ V
2 eqid 2728 . . . . 5 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))
31, 2fnmpti 6703 . . . 4 (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹))
4 swrdval2 14636 . . . . 5 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
54fneq1d 6652 . . . 4 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)) ↔ (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))) Fn (0..^(𝐿𝐹))))
63, 5mpbiri 257 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)))
7 hashfn 14374 . . 3 ((𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (♯‘(0..^(𝐿𝐹))))
86, 7syl 17 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (♯‘(0..^(𝐿𝐹))))
9 fznn0sub 13573 . . . 4 (𝐹 ∈ (0...𝐿) → (𝐿𝐹) ∈ ℕ0)
1093ad2ant2 1131 . . 3 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝐿𝐹) ∈ ℕ0)
11 hashfzo0 14429 . . 3 ((𝐿𝐹) ∈ ℕ0 → (♯‘(0..^(𝐿𝐹))) = (𝐿𝐹))
1210, 11syl 17 . 2 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(0..^(𝐿𝐹))) = (𝐿𝐹))
138, 12eqtrd 2768 1 ((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  cop 4638  cmpt 5235   Fn wfn 6548  cfv 6553  (class class class)co 7426  0cc0 11146   + caddc 11149  cmin 11482  0cn0 12510  ...cfz 13524  ..^cfzo 13667  chash 14329  Word cword 14504   substr csubstr 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-substr 14631
This theorem is referenced by:  swrdf  14640  swrdrlen  14649  swrdlen2  14650  swrds1  14656  ccatswrd  14658  swrdccat2  14659  ccatpfx  14691  swrdswrd  14695  pfxccatin12lem2  14721  pfxccatin12  14723  spllen  14744  cshwlen  14789  cshwidxmod  14793  efgredleme  19705  splfv3  32700  cycpmco2lem3  32870  cycpmco2lem4  32871  cycpmco2lem5  32872  cycpmco2lem6  32873  cycpmco2  32875  revpfxsfxrev  34758
  Copyright terms: Public domain W3C validator