| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2adedgwlkon | Structured version Visualization version GIF version | ||
| Description: In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
| umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
| umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
| Ref | Expression |
|---|---|
| umgr2adedgwlkon | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2adedgwlk.p | . 2 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | umgr2adedgwlk.f | . 2 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | umgr2adedgwlk.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
| 4 | umgr2adedgwlk.a | . . . . 5 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
| 5 | 3anass 1094 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
| 6 | 3, 4, 5 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| 7 | umgr2adedgwlk.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | 7 | umgr2adedgwlklem 29924 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 10 | 9 | simprd 495 | . 2 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
| 11 | 9 | simpld 494 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 12 | ssid 3953 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
| 13 | umgr2adedgwlk.j | . . . 4 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
| 14 | 12, 13 | sseqtrrid 3974 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
| 15 | ssid 3953 | . . . 4 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
| 16 | umgr2adedgwlk.k | . . . 4 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
| 17 | 15, 16 | sseqtrrid 3974 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
| 18 | 14, 17 | jca 511 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 19 | eqid 2733 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 20 | umgr2adedgwlk.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkond 29917 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {cpr 4577 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 〈“cs2 14750 〈“cs3 14751 Vtxcvtx 28976 iEdgciedg 28977 Edgcedg 29027 UMGraphcumgr 29061 WalksOncwlkson 29578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-s1 14506 df-s2 14757 df-s3 14758 df-edg 29028 df-umgr 29063 df-wlks 29580 df-wlkson 29581 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |