![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2adedgwlkon | Structured version Visualization version GIF version |
Description: In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) |
Ref | Expression |
---|---|
umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
Ref | Expression |
---|---|
umgr2adedgwlkon | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2adedgwlk.p | . 2 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
2 | umgr2adedgwlk.f | . 2 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
3 | umgr2adedgwlk.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
4 | umgr2adedgwlk.a | . . . . 5 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
5 | 3anass 1079 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
6 | 3, 4, 5 | sylanbrc 578 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
7 | umgr2adedgwlk.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | 7 | umgr2adedgwlklem 27324 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
10 | 9 | simprd 491 | . 2 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
11 | 9 | simpld 490 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
12 | ssid 3841 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
13 | umgr2adedgwlk.j | . . . 4 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
14 | 12, 13 | syl5sseqr 3872 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
15 | ssid 3841 | . . . 4 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
16 | umgr2adedgwlk.k | . . . 4 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
17 | 15, 16 | syl5sseqr 3872 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
18 | 14, 17 | jca 507 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
19 | eqid 2777 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
20 | umgr2adedgwlk.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkond 27317 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ⊆ wss 3791 {cpr 4399 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 〈“cs2 13992 〈“cs3 13993 Vtxcvtx 26344 iEdgciedg 26345 Edgcedg 26395 UMGraphcumgr 26429 WalksOncwlkson 26945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ifp 1047 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-concat 13661 df-s1 13686 df-s2 13999 df-s3 14000 df-edg 26396 df-umgr 26431 df-wlks 26947 df-wlkson 26948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |