![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr2adedgwlkon | Structured version Visualization version GIF version |
Description: In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) |
Ref | Expression |
---|---|
umgr2adedgwlk.e | β’ πΈ = (EdgβπΊ) |
umgr2adedgwlk.i | β’ πΌ = (iEdgβπΊ) |
umgr2adedgwlk.f | β’ πΉ = β¨βπ½πΎββ© |
umgr2adedgwlk.p | β’ π = β¨βπ΄π΅πΆββ© |
umgr2adedgwlk.g | β’ (π β πΊ β UMGraph) |
umgr2adedgwlk.a | β’ (π β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ)) |
umgr2adedgwlk.j | β’ (π β (πΌβπ½) = {π΄, π΅}) |
umgr2adedgwlk.k | β’ (π β (πΌβπΎ) = {π΅, πΆ}) |
Ref | Expression |
---|---|
umgr2adedgwlkon | β’ (π β πΉ(π΄(WalksOnβπΊ)πΆ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgr2adedgwlk.p | . 2 β’ π = β¨βπ΄π΅πΆββ© | |
2 | umgr2adedgwlk.f | . 2 β’ πΉ = β¨βπ½πΎββ© | |
3 | umgr2adedgwlk.g | . . . . 5 β’ (π β πΊ β UMGraph) | |
4 | umgr2adedgwlk.a | . . . . 5 β’ (π β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ)) | |
5 | 3anass 1094 | . . . . 5 β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β (πΊ β UMGraph β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ))) | |
6 | 3, 4, 5 | sylanbrc 582 | . . . 4 β’ (π β (πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ)) |
7 | umgr2adedgwlk.e | . . . . 5 β’ πΈ = (EdgβπΊ) | |
8 | 7 | umgr2adedgwlklem 29466 | . . . 4 β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ) β ((π΄ β π΅ β§ π΅ β πΆ) β§ (π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)))) |
9 | 6, 8 | syl 17 | . . 3 β’ (π β ((π΄ β π΅ β§ π΅ β πΆ) β§ (π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ) β§ πΆ β (VtxβπΊ)))) |
10 | 9 | simprd 495 | . 2 β’ (π β (π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ) β§ πΆ β (VtxβπΊ))) |
11 | 9 | simpld 494 | . 2 β’ (π β (π΄ β π΅ β§ π΅ β πΆ)) |
12 | ssid 4004 | . . . 4 β’ {π΄, π΅} β {π΄, π΅} | |
13 | umgr2adedgwlk.j | . . . 4 β’ (π β (πΌβπ½) = {π΄, π΅}) | |
14 | 12, 13 | sseqtrrid 4035 | . . 3 β’ (π β {π΄, π΅} β (πΌβπ½)) |
15 | ssid 4004 | . . . 4 β’ {π΅, πΆ} β {π΅, πΆ} | |
16 | umgr2adedgwlk.k | . . . 4 β’ (π β (πΌβπΎ) = {π΅, πΆ}) | |
17 | 15, 16 | sseqtrrid 4035 | . . 3 β’ (π β {π΅, πΆ} β (πΌβπΎ)) |
18 | 14, 17 | jca 511 | . 2 β’ (π β ({π΄, π΅} β (πΌβπ½) β§ {π΅, πΆ} β (πΌβπΎ))) |
19 | eqid 2731 | . 2 β’ (VtxβπΊ) = (VtxβπΊ) | |
20 | umgr2adedgwlk.i | . 2 β’ πΌ = (iEdgβπΊ) | |
21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkond 29459 | 1 β’ (π β πΉ(π΄(WalksOnβπΊ)πΆ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 β wss 3948 {cpr 4630 class class class wbr 5148 βcfv 6543 (class class class)co 7412 β¨βcs2 14797 β¨βcs3 14798 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 UMGraphcumgr 28609 WalksOncwlkson 29122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-dju 9900 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 df-s3 14805 df-edg 28576 df-umgr 28611 df-wlks 29124 df-wlkson 29125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |