| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgr2adedgwlkon | Structured version Visualization version GIF version | ||
| Description: In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 30-Jan-2021.) |
| Ref | Expression |
|---|---|
| umgr2adedgwlk.e | ⊢ 𝐸 = (Edg‘𝐺) |
| umgr2adedgwlk.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| umgr2adedgwlk.f | ⊢ 𝐹 = 〈“𝐽𝐾”〉 |
| umgr2adedgwlk.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 |
| umgr2adedgwlk.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| umgr2adedgwlk.a | ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| umgr2adedgwlk.j | ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) |
| umgr2adedgwlk.k | ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) |
| Ref | Expression |
|---|---|
| umgr2adedgwlkon | ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2adedgwlk.p | . 2 ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 | |
| 2 | umgr2adedgwlk.f | . 2 ⊢ 𝐹 = 〈“𝐽𝐾”〉 | |
| 3 | umgr2adedgwlk.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
| 4 | umgr2adedgwlk.a | . . . . 5 ⊢ (𝜑 → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) | |
| 5 | 3anass 1094 | . . . . 5 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))) | |
| 6 | 3, 4, 5 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) |
| 7 | umgr2adedgwlk.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | 7 | umgr2adedgwlklem 29874 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺)))) |
| 10 | 9 | simprd 495 | . 2 ⊢ (𝜑 → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺) ∧ 𝐶 ∈ (Vtx‘𝐺))) |
| 11 | 9 | simpld 494 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
| 12 | ssid 3969 | . . . 4 ⊢ {𝐴, 𝐵} ⊆ {𝐴, 𝐵} | |
| 13 | umgr2adedgwlk.j | . . . 4 ⊢ (𝜑 → (𝐼‘𝐽) = {𝐴, 𝐵}) | |
| 14 | 12, 13 | sseqtrrid 3990 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐼‘𝐽)) |
| 15 | ssid 3969 | . . . 4 ⊢ {𝐵, 𝐶} ⊆ {𝐵, 𝐶} | |
| 16 | umgr2adedgwlk.k | . . . 4 ⊢ (𝜑 → (𝐼‘𝐾) = {𝐵, 𝐶}) | |
| 17 | 15, 16 | sseqtrrid 3990 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (𝐼‘𝐾)) |
| 18 | 14, 17 | jca 511 | . 2 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) |
| 19 | eqid 2729 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 20 | umgr2adedgwlk.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 21 | 1, 2, 10, 11, 18, 19, 20 | 2wlkond 29867 | 1 ⊢ (𝜑 → 𝐹(𝐴(WalksOn‘𝐺)𝐶)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 {cpr 4591 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 〈“cs2 14807 〈“cs3 14808 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 UMGraphcumgr 29008 WalksOncwlkson 29525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-edg 28975 df-umgr 29010 df-wlks 29527 df-wlkson 29528 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |