MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uspgr2wlkeq2 Structured version   Visualization version   GIF version

Theorem uspgr2wlkeq2 29172
Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
uspgr2wlkeq2 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡))

Proof of Theorem uspgr2wlkeq2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁) β†’ (β™―β€˜(1st β€˜π΅)) = 𝑁)
21eqcomd 2737 . . . . 5 ((𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁) β†’ 𝑁 = (β™―β€˜(1st β€˜π΅)))
323ad2ant3 1134 . . . 4 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) β†’ 𝑁 = (β™―β€˜(1st β€˜π΅)))
43adantr 480 . . 3 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝑁 = (β™―β€˜(1st β€˜π΅)))
5 fveq1 6890 . . . . 5 ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ ((2nd β€˜π΄)β€˜π‘–) = ((2nd β€˜π΅)β€˜π‘–))
65adantl 481 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ ((2nd β€˜π΄)β€˜π‘–) = ((2nd β€˜π΅)β€˜π‘–))
76ralrimivw 3149 . . 3 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ βˆ€π‘– ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘–) = ((2nd β€˜π΅)β€˜π‘–))
8 simpl1l 1223 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝐺 ∈ USPGraph)
9 simpl 482 . . . . . . 7 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) β†’ 𝐴 ∈ (Walksβ€˜πΊ))
10 simpl 482 . . . . . . 7 ((𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁) β†’ 𝐡 ∈ (Walksβ€˜πΊ))
119, 10anim12i 612 . . . . . 6 (((𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) β†’ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)))
12113adant1 1129 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) β†’ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)))
1312adantr 480 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)))
14 simpr 484 . . . . . . 7 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) β†’ (β™―β€˜(1st β€˜π΄)) = 𝑁)
1514eqcomd 2737 . . . . . 6 ((𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) β†’ 𝑁 = (β™―β€˜(1st β€˜π΄)))
16153ad2ant2 1133 . . . . 5 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) β†’ 𝑁 = (β™―β€˜(1st β€˜π΄)))
1716adantr 480 . . . 4 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝑁 = (β™―β€˜(1st β€˜π΄)))
18 uspgr2wlkeq 29171 . . . 4 ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ 𝐡 ∈ (Walksβ€˜πΊ)) ∧ 𝑁 = (β™―β€˜(1st β€˜π΄))) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘– ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘–) = ((2nd β€˜π΅)β€˜π‘–))))
198, 13, 17, 18syl3anc 1370 . . 3 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ (𝐴 = 𝐡 ↔ (𝑁 = (β™―β€˜(1st β€˜π΅)) ∧ βˆ€π‘– ∈ (0...𝑁)((2nd β€˜π΄)β€˜π‘–) = ((2nd β€˜π΅)β€˜π‘–))))
204, 7, 19mpbir2and 710 . 2 ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) ∧ (2nd β€˜π΄) = (2nd β€˜π΅)) β†’ 𝐴 = 𝐡)
2120ex 412 1 (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ β„•0) ∧ (𝐴 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΄)) = 𝑁) ∧ (𝐡 ∈ (Walksβ€˜πΊ) ∧ (β™―β€˜(1st β€˜π΅)) = 𝑁)) β†’ ((2nd β€˜π΄) = (2nd β€˜π΅) β†’ 𝐴 = 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  β€˜cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  0cc0 11114  β„•0cn0 12477  ...cfz 13489  β™―chash 14295  USPGraphcuspgr 28676  Walkscwlks 29121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-map 8826  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-edg 28576  df-uhgr 28586  df-upgr 28610  df-uspgr 28678  df-wlks 29124
This theorem is referenced by:  uspgr2wlkeqi  29173
  Copyright terms: Public domain W3C validator