![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uspgr2wlkeq2 | Structured version Visualization version GIF version |
Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.) |
Ref | Expression |
---|---|
uspgr2wlkeq2 | ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . . 6 ⊢ ((𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁) → (♯‘(1st ‘𝐵)) = 𝑁) | |
2 | 1 | eqcomd 2731 | . . . . 5 ⊢ ((𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁) → 𝑁 = (♯‘(1st ‘𝐵))) |
3 | 2 | 3ad2ant3 1132 | . . . 4 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → 𝑁 = (♯‘(1st ‘𝐵))) |
4 | 3 | adantr 479 | . . 3 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝑁 = (♯‘(1st ‘𝐵))) |
5 | fveq1 6895 | . . . . 5 ⊢ ((2nd ‘𝐴) = (2nd ‘𝐵) → ((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)) | |
6 | 5 | adantl 480 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → ((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)) |
7 | 6 | ralrimivw 3139 | . . 3 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → ∀𝑖 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)) |
8 | simpl1l 1221 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐺 ∈ USPGraph) | |
9 | simpl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) → 𝐴 ∈ (Walks‘𝐺)) | |
10 | simpl 481 | . . . . . . 7 ⊢ ((𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁) → 𝐵 ∈ (Walks‘𝐺)) | |
11 | 9, 10 | anim12i 611 | . . . . . 6 ⊢ (((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) |
12 | 11 | 3adant1 1127 | . . . . 5 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) |
13 | 12 | adantr 479 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) |
14 | simpr 483 | . . . . . . 7 ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) → (♯‘(1st ‘𝐴)) = 𝑁) | |
15 | 14 | eqcomd 2731 | . . . . . 6 ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) → 𝑁 = (♯‘(1st ‘𝐴))) |
16 | 15 | 3ad2ant2 1131 | . . . . 5 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → 𝑁 = (♯‘(1st ‘𝐴))) |
17 | 16 | adantr 479 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝑁 = (♯‘(1st ‘𝐴))) |
18 | uspgr2wlkeq 29537 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)))) | |
19 | 8, 13, 17, 18 | syl3anc 1368 | . . 3 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)))) |
20 | 4, 7, 19 | mpbir2and 711 | . 2 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐴 = 𝐵) |
21 | 20 | ex 411 | 1 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ‘cfv 6549 (class class class)co 7419 1st c1st 7992 2nd c2nd 7993 0cc0 11145 ℕ0cn0 12510 ...cfz 13524 ♯chash 14330 USPGraphcuspgr 29038 Walkscwlks 29487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9931 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14331 df-word 14506 df-edg 28938 df-uhgr 28948 df-upgr 28972 df-uspgr 29040 df-wlks 29490 |
This theorem is referenced by: uspgr2wlkeqi 29539 |
Copyright terms: Public domain | W3C validator |