![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gcdcld | GIF version |
Description: Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
gcdcld.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gcdcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
gcdcld | ⊢ (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcld.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | gcdcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | gcdcl 11999 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 (class class class)co 5896 ℕ0cn0 9206 ℤcz 9283 gcd cgcd 11975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 ax-arch 7960 ax-caucvg 7961 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-recs 6330 df-frec 6416 df-sup 7013 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-n0 9207 df-z 9284 df-uz 9559 df-q 9650 df-rp 9684 df-fz 10039 df-fzo 10173 df-fl 10301 df-mod 10354 df-seqfrec 10477 df-exp 10551 df-cj 10883 df-re 10884 df-im 10885 df-rsqrt 11039 df-abs 11040 df-dvds 11827 df-gcd 11976 |
This theorem is referenced by: gcdaddm 12017 mulgcd 12049 dvdsmulgcd 12058 mulgcddvds 12126 rpmulgcd2 12127 qredeu 12129 rpmul 12130 divgcdcoprmex 12134 cncongr1 12135 rpexp 12185 phivalfi 12244 phiprmpw 12254 phimullem 12257 eulerthlemfi 12260 hashgcdeq 12271 phisum 12272 pythagtriplem3 12299 pythagtriplem6 12302 pythagtriplem7 12303 pockthlem 12388 2sqlem8 14928 |
Copyright terms: Public domain | W3C validator |