Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifn0 Structured version   Visualization version   GIF version

Theorem fwddifn0 36204
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifn0.1 (𝜑𝐴 ⊆ ℂ)
fwddifn0.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifn0.3 (𝜑𝑋𝐴)
Assertion
Ref Expression
fwddifn0 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem fwddifn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12396 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
3 fwddifn0.1 . . 3 (𝜑𝐴 ⊆ ℂ)
4 fwddifn0.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
5 fwddifn0.3 . . . 4 (𝜑𝑋𝐴)
63, 5sseldd 3935 . . 3 (𝜑𝑋 ∈ ℂ)
7 0z 12479 . . . . . . 7 0 ∈ ℤ
8 fzsn 13466 . . . . . . 7 (0 ∈ ℤ → (0...0) = {0})
97, 8ax-mp 5 . . . . . 6 (0...0) = {0}
109eleq2i 2823 . . . . 5 (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0})
11 velsn 4592 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
1210, 11bitri 275 . . . 4 (𝑘 ∈ (0...0) ↔ 𝑘 = 0)
13 oveq2 7354 . . . . . 6 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
1413adantl 481 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0))
156addridd 11313 . . . . . . 7 (𝜑 → (𝑋 + 0) = 𝑋)
1615, 5eqeltrd 2831 . . . . . 6 (𝜑 → (𝑋 + 0) ∈ 𝐴)
1716adantr 480 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 0) ∈ 𝐴)
1814, 17eqeltrd 2831 . . . 4 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴)
1912, 18sylan2b 594 . . 3 ((𝜑𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴)
202, 3, 4, 6, 19fwddifnval 36203 . 2 (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
2115fveq2d 6826 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹𝑋))
2221oveq2d 7362 . . . . . . . 8 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹𝑋)))
234, 5ffvelcdmd 7018 . . . . . . . . 9 (𝜑 → (𝐹𝑋) ∈ ℂ)
2423mullidd 11130 . . . . . . . 8 (𝜑 → (1 · (𝐹𝑋)) = (𝐹𝑋))
2522, 24eqtrd 2766 . . . . . . 7 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹𝑋))
2625oveq2d 7362 . . . . . 6 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹𝑋)))
2726, 24eqtrd 2766 . . . . 5 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹𝑋))
2827, 23eqeltrd 2831 . . . 4 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ)
29 oveq2 7354 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
30 bcnn 14219 . . . . . . . 8 (0 ∈ ℕ0 → (0C0) = 1)
311, 30ax-mp 5 . . . . . . 7 (0C0) = 1
3229, 31eqtrdi 2782 . . . . . 6 (𝑘 = 0 → (0C𝑘) = 1)
33 oveq2 7354 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
34 0m0e0 12240 . . . . . . . . . 10 (0 − 0) = 0
3533, 34eqtrdi 2782 . . . . . . . . 9 (𝑘 = 0 → (0 − 𝑘) = 0)
3635oveq2d 7362 . . . . . . . 8 (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0))
37 neg1cn 12110 . . . . . . . . 9 -1 ∈ ℂ
38 exp0 13972 . . . . . . . . 9 (-1 ∈ ℂ → (-1↑0) = 1)
3937, 38ax-mp 5 . . . . . . . 8 (-1↑0) = 1
4036, 39eqtrdi 2782 . . . . . . 7 (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1)
4113fveq2d 6826 . . . . . . 7 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
4240, 41oveq12d 7364 . . . . . 6 (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0))))
4332, 42oveq12d 7364 . . . . 5 (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4443fsum1 15654 . . . 4 ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
457, 28, 44sylancr 587 . . 3 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4645, 27eqtrd 2766 . 2 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹𝑋))
4720, 46eqtrd 2766 1 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  {csn 4576  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  Ccbc 14209  Σcsu 15593  n cfwddifn 36200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-fwddifn 36201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator