Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifn0 Structured version   Visualization version   GIF version

Theorem fwddifn0 34203
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifn0.1 (𝜑𝐴 ⊆ ℂ)
fwddifn0.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifn0.3 (𝜑𝑋𝐴)
Assertion
Ref Expression
fwddifn0 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem fwddifn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12105 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
3 fwddifn0.1 . . 3 (𝜑𝐴 ⊆ ℂ)
4 fwddifn0.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
5 fwddifn0.3 . . . 4 (𝜑𝑋𝐴)
63, 5sseldd 3902 . . 3 (𝜑𝑋 ∈ ℂ)
7 0z 12187 . . . . . . 7 0 ∈ ℤ
8 fzsn 13154 . . . . . . 7 (0 ∈ ℤ → (0...0) = {0})
97, 8ax-mp 5 . . . . . 6 (0...0) = {0}
109eleq2i 2829 . . . . 5 (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0})
11 velsn 4557 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
1210, 11bitri 278 . . . 4 (𝑘 ∈ (0...0) ↔ 𝑘 = 0)
13 oveq2 7221 . . . . . 6 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
1413adantl 485 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0))
156addid1d 11032 . . . . . . 7 (𝜑 → (𝑋 + 0) = 𝑋)
1615, 5eqeltrd 2838 . . . . . 6 (𝜑 → (𝑋 + 0) ∈ 𝐴)
1716adantr 484 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 0) ∈ 𝐴)
1814, 17eqeltrd 2838 . . . 4 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴)
1912, 18sylan2b 597 . . 3 ((𝜑𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴)
202, 3, 4, 6, 19fwddifnval 34202 . 2 (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
2115fveq2d 6721 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹𝑋))
2221oveq2d 7229 . . . . . . . 8 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹𝑋)))
234, 5ffvelrnd 6905 . . . . . . . . 9 (𝜑 → (𝐹𝑋) ∈ ℂ)
2423mulid2d 10851 . . . . . . . 8 (𝜑 → (1 · (𝐹𝑋)) = (𝐹𝑋))
2522, 24eqtrd 2777 . . . . . . 7 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹𝑋))
2625oveq2d 7229 . . . . . 6 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹𝑋)))
2726, 24eqtrd 2777 . . . . 5 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹𝑋))
2827, 23eqeltrd 2838 . . . 4 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ)
29 oveq2 7221 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
30 bcnn 13878 . . . . . . . 8 (0 ∈ ℕ0 → (0C0) = 1)
311, 30ax-mp 5 . . . . . . 7 (0C0) = 1
3229, 31eqtrdi 2794 . . . . . 6 (𝑘 = 0 → (0C𝑘) = 1)
33 oveq2 7221 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
34 0m0e0 11950 . . . . . . . . . 10 (0 − 0) = 0
3533, 34eqtrdi 2794 . . . . . . . . 9 (𝑘 = 0 → (0 − 𝑘) = 0)
3635oveq2d 7229 . . . . . . . 8 (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0))
37 neg1cn 11944 . . . . . . . . 9 -1 ∈ ℂ
38 exp0 13639 . . . . . . . . 9 (-1 ∈ ℂ → (-1↑0) = 1)
3937, 38ax-mp 5 . . . . . . . 8 (-1↑0) = 1
4036, 39eqtrdi 2794 . . . . . . 7 (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1)
4113fveq2d 6721 . . . . . . 7 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
4240, 41oveq12d 7231 . . . . . 6 (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0))))
4332, 42oveq12d 7231 . . . . 5 (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4443fsum1 15311 . . . 4 ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
457, 28, 44sylancr 590 . . 3 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4645, 27eqtrd 2777 . 2 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹𝑋))
4720, 46eqtrd 2777 1 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wss 3866  {csn 4541  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cmin 11062  -cneg 11063  0cn0 12090  cz 12176  ...cfz 13095  cexp 13635  Ccbc 13868  Σcsu 15249  n cfwddifn 34199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-fwddifn 34200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator