| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fwddifn0 | Structured version Visualization version GIF version | ||
| Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
| Ref | Expression |
|---|---|
| fwddifn0.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| fwddifn0.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| fwddifn0.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fwddifn0 | ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12464 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | fwddifn0.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 4 | fwddifn0.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 5 | fwddifn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 3, 5 | sseldd 3950 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 0z 12547 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 8 | fzsn 13534 | . . . . . . 7 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (0...0) = {0} |
| 10 | 9 | eleq2i 2821 | . . . . 5 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0}) |
| 11 | velsn 4608 | . . . . 5 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 12 | 10, 11 | bitri 275 | . . . 4 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 = 0) |
| 13 | oveq2 7398 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0)) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0)) |
| 15 | 6 | addridd 11381 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
| 16 | 15, 5 | eqeltrd 2829 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 0) ∈ 𝐴) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 0) ∈ 𝐴) |
| 18 | 14, 17 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴) |
| 19 | 12, 18 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴) |
| 20 | 2, 3, 4, 6, 19 | fwddifnval 36158 | . 2 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 21 | 15 | fveq2d 6865 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹‘𝑋)) |
| 22 | 21 | oveq2d 7406 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹‘𝑋))) |
| 23 | 4, 5 | ffvelcdmd 7060 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
| 24 | 23 | mullidd 11199 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 25 | 22, 24 | eqtrd 2765 | . . . . . . 7 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹‘𝑋)) |
| 26 | 25 | oveq2d 7406 | . . . . . 6 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹‘𝑋))) |
| 27 | 26, 24 | eqtrd 2765 | . . . . 5 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹‘𝑋)) |
| 28 | 27, 23 | eqeltrd 2829 | . . . 4 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) |
| 29 | oveq2 7398 | . . . . . . 7 ⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) | |
| 30 | bcnn 14284 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → (0C0) = 1) | |
| 31 | 1, 30 | ax-mp 5 | . . . . . . 7 ⊢ (0C0) = 1 |
| 32 | 29, 31 | eqtrdi 2781 | . . . . . 6 ⊢ (𝑘 = 0 → (0C𝑘) = 1) |
| 33 | oveq2 7398 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
| 34 | 0m0e0 12308 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
| 35 | 33, 34 | eqtrdi 2781 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
| 36 | 35 | oveq2d 7406 | . . . . . . . 8 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0)) |
| 37 | neg1cn 12178 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 38 | exp0 14037 | . . . . . . . . 9 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (-1↑0) = 1 |
| 40 | 36, 39 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1) |
| 41 | 13 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0))) |
| 42 | 40, 41 | oveq12d 7408 | . . . . . 6 ⊢ (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0)))) |
| 43 | 32, 42 | oveq12d 7408 | . . . . 5 ⊢ (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 44 | 43 | fsum1 15720 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 45 | 7, 28, 44 | sylancr 587 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 46 | 45, 27 | eqtrd 2765 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹‘𝑋)) |
| 47 | 20, 46 | eqtrd 2765 | 1 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ↑cexp 14033 Ccbc 14274 Σcsu 15659 △n cfwddifn 36155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-fwddifn 36156 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |