Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifn0 Structured version   Visualization version   GIF version

Theorem fwddifn0 34466
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifn0.1 (𝜑𝐴 ⊆ ℂ)
fwddifn0.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifn0.3 (𝜑𝑋𝐴)
Assertion
Ref Expression
fwddifn0 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem fwddifn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12248 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
3 fwddifn0.1 . . 3 (𝜑𝐴 ⊆ ℂ)
4 fwddifn0.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
5 fwddifn0.3 . . . 4 (𝜑𝑋𝐴)
63, 5sseldd 3922 . . 3 (𝜑𝑋 ∈ ℂ)
7 0z 12330 . . . . . . 7 0 ∈ ℤ
8 fzsn 13298 . . . . . . 7 (0 ∈ ℤ → (0...0) = {0})
97, 8ax-mp 5 . . . . . 6 (0...0) = {0}
109eleq2i 2830 . . . . 5 (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0})
11 velsn 4577 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
1210, 11bitri 274 . . . 4 (𝑘 ∈ (0...0) ↔ 𝑘 = 0)
13 oveq2 7283 . . . . . 6 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
1413adantl 482 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0))
156addid1d 11175 . . . . . . 7 (𝜑 → (𝑋 + 0) = 𝑋)
1615, 5eqeltrd 2839 . . . . . 6 (𝜑 → (𝑋 + 0) ∈ 𝐴)
1716adantr 481 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 0) ∈ 𝐴)
1814, 17eqeltrd 2839 . . . 4 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴)
1912, 18sylan2b 594 . . 3 ((𝜑𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴)
202, 3, 4, 6, 19fwddifnval 34465 . 2 (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
2115fveq2d 6778 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹𝑋))
2221oveq2d 7291 . . . . . . . 8 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹𝑋)))
234, 5ffvelrnd 6962 . . . . . . . . 9 (𝜑 → (𝐹𝑋) ∈ ℂ)
2423mulid2d 10993 . . . . . . . 8 (𝜑 → (1 · (𝐹𝑋)) = (𝐹𝑋))
2522, 24eqtrd 2778 . . . . . . 7 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹𝑋))
2625oveq2d 7291 . . . . . 6 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹𝑋)))
2726, 24eqtrd 2778 . . . . 5 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹𝑋))
2827, 23eqeltrd 2839 . . . 4 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ)
29 oveq2 7283 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
30 bcnn 14026 . . . . . . . 8 (0 ∈ ℕ0 → (0C0) = 1)
311, 30ax-mp 5 . . . . . . 7 (0C0) = 1
3229, 31eqtrdi 2794 . . . . . 6 (𝑘 = 0 → (0C𝑘) = 1)
33 oveq2 7283 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
34 0m0e0 12093 . . . . . . . . . 10 (0 − 0) = 0
3533, 34eqtrdi 2794 . . . . . . . . 9 (𝑘 = 0 → (0 − 𝑘) = 0)
3635oveq2d 7291 . . . . . . . 8 (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0))
37 neg1cn 12087 . . . . . . . . 9 -1 ∈ ℂ
38 exp0 13786 . . . . . . . . 9 (-1 ∈ ℂ → (-1↑0) = 1)
3937, 38ax-mp 5 . . . . . . . 8 (-1↑0) = 1
4036, 39eqtrdi 2794 . . . . . . 7 (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1)
4113fveq2d 6778 . . . . . . 7 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
4240, 41oveq12d 7293 . . . . . 6 (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0))))
4332, 42oveq12d 7293 . . . . 5 (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4443fsum1 15459 . . . 4 ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
457, 28, 44sylancr 587 . . 3 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4645, 27eqtrd 2778 . 2 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹𝑋))
4720, 46eqtrd 2778 1 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887  {csn 4561  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  Ccbc 14016  Σcsu 15397  n cfwddifn 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-fwddifn 34463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator