| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fwddifn0 | Structured version Visualization version GIF version | ||
| Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
| Ref | Expression |
|---|---|
| fwddifn0.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| fwddifn0.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| fwddifn0.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fwddifn0 | ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12405 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | fwddifn0.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 4 | fwddifn0.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 5 | fwddifn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 3, 5 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 0z 12488 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 8 | fzsn 13470 | . . . . . . 7 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (0...0) = {0} |
| 10 | 9 | eleq2i 2825 | . . . . 5 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0}) |
| 11 | velsn 4593 | . . . . 5 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 12 | 10, 11 | bitri 275 | . . . 4 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 = 0) |
| 13 | oveq2 7362 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0)) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0)) |
| 15 | 6 | addridd 11322 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
| 16 | 15, 5 | eqeltrd 2833 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 0) ∈ 𝐴) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 0) ∈ 𝐴) |
| 18 | 14, 17 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴) |
| 19 | 12, 18 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴) |
| 20 | 2, 3, 4, 6, 19 | fwddifnval 36230 | . 2 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 21 | 15 | fveq2d 6834 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹‘𝑋)) |
| 22 | 21 | oveq2d 7370 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹‘𝑋))) |
| 23 | 4, 5 | ffvelcdmd 7026 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
| 24 | 23 | mullidd 11139 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 25 | 22, 24 | eqtrd 2768 | . . . . . . 7 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹‘𝑋)) |
| 26 | 25 | oveq2d 7370 | . . . . . 6 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹‘𝑋))) |
| 27 | 26, 24 | eqtrd 2768 | . . . . 5 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹‘𝑋)) |
| 28 | 27, 23 | eqeltrd 2833 | . . . 4 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) |
| 29 | oveq2 7362 | . . . . . . 7 ⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) | |
| 30 | bcnn 14223 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → (0C0) = 1) | |
| 31 | 1, 30 | ax-mp 5 | . . . . . . 7 ⊢ (0C0) = 1 |
| 32 | 29, 31 | eqtrdi 2784 | . . . . . 6 ⊢ (𝑘 = 0 → (0C𝑘) = 1) |
| 33 | oveq2 7362 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
| 34 | 0m0e0 12249 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
| 35 | 33, 34 | eqtrdi 2784 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
| 36 | 35 | oveq2d 7370 | . . . . . . . 8 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0)) |
| 37 | neg1cn 12119 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 38 | exp0 13976 | . . . . . . . . 9 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (-1↑0) = 1 |
| 40 | 36, 39 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1) |
| 41 | 13 | fveq2d 6834 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0))) |
| 42 | 40, 41 | oveq12d 7372 | . . . . . 6 ⊢ (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0)))) |
| 43 | 32, 42 | oveq12d 7372 | . . . . 5 ⊢ (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 44 | 43 | fsum1 15658 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 45 | 7, 28, 44 | sylancr 587 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 46 | 45, 27 | eqtrd 2768 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹‘𝑋)) |
| 47 | 20, 46 | eqtrd 2768 | 1 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 − cmin 11353 -cneg 11354 ℕ0cn0 12390 ℤcz 12477 ...cfz 13411 ↑cexp 13972 Ccbc 14213 Σcsu 15597 △n cfwddifn 36227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-fac 14185 df-bc 14214 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 df-fwddifn 36228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |