Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifn0 Structured version   Visualization version   GIF version

Theorem fwddifn0 34681
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifn0.1 (𝜑𝐴 ⊆ ℂ)
fwddifn0.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifn0.3 (𝜑𝑋𝐴)
Assertion
Ref Expression
fwddifn0 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem fwddifn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12386 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
3 fwddifn0.1 . . 3 (𝜑𝐴 ⊆ ℂ)
4 fwddifn0.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
5 fwddifn0.3 . . . 4 (𝜑𝑋𝐴)
63, 5sseldd 3943 . . 3 (𝜑𝑋 ∈ ℂ)
7 0z 12468 . . . . . . 7 0 ∈ ℤ
8 fzsn 13437 . . . . . . 7 (0 ∈ ℤ → (0...0) = {0})
97, 8ax-mp 5 . . . . . 6 (0...0) = {0}
109eleq2i 2829 . . . . 5 (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0})
11 velsn 4600 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
1210, 11bitri 274 . . . 4 (𝑘 ∈ (0...0) ↔ 𝑘 = 0)
13 oveq2 7359 . . . . . 6 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
1413adantl 482 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0))
156addid1d 11313 . . . . . . 7 (𝜑 → (𝑋 + 0) = 𝑋)
1615, 5eqeltrd 2838 . . . . . 6 (𝜑 → (𝑋 + 0) ∈ 𝐴)
1716adantr 481 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 0) ∈ 𝐴)
1814, 17eqeltrd 2838 . . . 4 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴)
1912, 18sylan2b 594 . . 3 ((𝜑𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴)
202, 3, 4, 6, 19fwddifnval 34680 . 2 (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
2115fveq2d 6843 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹𝑋))
2221oveq2d 7367 . . . . . . . 8 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹𝑋)))
234, 5ffvelcdmd 7032 . . . . . . . . 9 (𝜑 → (𝐹𝑋) ∈ ℂ)
2423mulid2d 11131 . . . . . . . 8 (𝜑 → (1 · (𝐹𝑋)) = (𝐹𝑋))
2522, 24eqtrd 2776 . . . . . . 7 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹𝑋))
2625oveq2d 7367 . . . . . 6 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹𝑋)))
2726, 24eqtrd 2776 . . . . 5 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹𝑋))
2827, 23eqeltrd 2838 . . . 4 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ)
29 oveq2 7359 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
30 bcnn 14166 . . . . . . . 8 (0 ∈ ℕ0 → (0C0) = 1)
311, 30ax-mp 5 . . . . . . 7 (0C0) = 1
3229, 31eqtrdi 2792 . . . . . 6 (𝑘 = 0 → (0C𝑘) = 1)
33 oveq2 7359 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
34 0m0e0 12231 . . . . . . . . . 10 (0 − 0) = 0
3533, 34eqtrdi 2792 . . . . . . . . 9 (𝑘 = 0 → (0 − 𝑘) = 0)
3635oveq2d 7367 . . . . . . . 8 (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0))
37 neg1cn 12225 . . . . . . . . 9 -1 ∈ ℂ
38 exp0 13925 . . . . . . . . 9 (-1 ∈ ℂ → (-1↑0) = 1)
3937, 38ax-mp 5 . . . . . . . 8 (-1↑0) = 1
4036, 39eqtrdi 2792 . . . . . . 7 (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1)
4113fveq2d 6843 . . . . . . 7 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
4240, 41oveq12d 7369 . . . . . 6 (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0))))
4332, 42oveq12d 7369 . . . . 5 (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4443fsum1 15586 . . . 4 ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
457, 28, 44sylancr 587 . . 3 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4645, 27eqtrd 2776 . 2 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹𝑋))
4720, 46eqtrd 2776 1 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3908  {csn 4584  wf 6489  cfv 6493  (class class class)co 7351  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11343  -cneg 11344  0cn0 12371  cz 12457  ...cfz 13378  cexp 13921  Ccbc 14156  Σcsu 15524  n cfwddifn 34677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-inf2 9535  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-er 8606  df-pm 8726  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-sup 9336  df-oi 9404  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-fz 13379  df-fzo 13522  df-seq 13861  df-exp 13922  df-fac 14128  df-bc 14157  df-hash 14185  df-cj 14938  df-re 14939  df-im 14940  df-sqrt 15074  df-abs 15075  df-clim 15324  df-sum 15525  df-fwddifn 34678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator