Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fwddifn0 | Structured version Visualization version GIF version |
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
Ref | Expression |
---|---|
fwddifn0.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
fwddifn0.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
fwddifn0.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
fwddifn0 |
⊢ (𝜑 → ((0
△ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12178 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
3 | fwddifn0.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
4 | fwddifn0.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
5 | fwddifn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
6 | 3, 5 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
7 | 0z 12260 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
8 | fzsn 13227 | . . . . . . 7 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (0...0) = {0} |
10 | 9 | eleq2i 2830 | . . . . 5 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0}) |
11 | velsn 4574 | . . . . 5 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
12 | 10, 11 | bitri 274 | . . . 4 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 = 0) |
13 | oveq2 7263 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0)) | |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0)) |
15 | 6 | addid1d 11105 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
16 | 15, 5 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 0) ∈ 𝐴) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 0) ∈ 𝐴) |
18 | 14, 17 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴) |
19 | 12, 18 | sylan2b 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴) |
20 | 2, 3, 4, 6, 19 | fwddifnval 34392 |
. 2
⊢ (𝜑 → ((0
△ |
21 | 15 | fveq2d 6760 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹‘𝑋)) |
22 | 21 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹‘𝑋))) |
23 | 4, 5 | ffvelrnd 6944 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
24 | 23 | mulid2d 10924 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
25 | 22, 24 | eqtrd 2778 | . . . . . . 7 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹‘𝑋)) |
26 | 25 | oveq2d 7271 | . . . . . 6 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹‘𝑋))) |
27 | 26, 24 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹‘𝑋)) |
28 | 27, 23 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) |
29 | oveq2 7263 | . . . . . . 7 ⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) | |
30 | bcnn 13954 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → (0C0) = 1) | |
31 | 1, 30 | ax-mp 5 | . . . . . . 7 ⊢ (0C0) = 1 |
32 | 29, 31 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑘 = 0 → (0C𝑘) = 1) |
33 | oveq2 7263 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
34 | 0m0e0 12023 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
35 | 33, 34 | eqtrdi 2795 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
36 | 35 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0)) |
37 | neg1cn 12017 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
38 | exp0 13714 | . . . . . . . . 9 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (-1↑0) = 1 |
40 | 36, 39 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1) |
41 | 13 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0))) |
42 | 40, 41 | oveq12d 7273 | . . . . . 6 ⊢ (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0)))) |
43 | 32, 42 | oveq12d 7273 | . . . . 5 ⊢ (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
44 | 43 | fsum1 15387 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
45 | 7, 28, 44 | sylancr 586 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
46 | 45, 27 | eqtrd 2778 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹‘𝑋)) |
47 | 20, 46 | eqtrd 2778 |
1
⊢ (𝜑 → ((0
△ |
Colors of variables: wff setvar class |
Syntax hints:
→ wi 4 ∧ wa 395
= wceq 1539 ∈
wcel 2108 ⊆ wss 3883
{csn 4558 ⟶wf 6414
‘cfv 6418 (class class class)co 7255
ℂcc 10800 0cc0 10802
1c1 10803 + caddc 10805 · cmul 10807
− cmin 11135 -cneg 11136
ℕ0cn0 12163
ℤcz 12249 ...cfz 13168
↑cexp 13710 Ccbc 13944
Σcsu 15325
△ |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-fwddifn 34390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |