Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifn0 Structured version   Visualization version   GIF version

Theorem fwddifn0 36146
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifn0.1 (𝜑𝐴 ⊆ ℂ)
fwddifn0.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifn0.3 (𝜑𝑋𝐴)
Assertion
Ref Expression
fwddifn0 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))

Proof of Theorem fwddifn0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12539 . . . 4 0 ∈ ℕ0
21a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
3 fwddifn0.1 . . 3 (𝜑𝐴 ⊆ ℂ)
4 fwddifn0.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
5 fwddifn0.3 . . . 4 (𝜑𝑋𝐴)
63, 5sseldd 3996 . . 3 (𝜑𝑋 ∈ ℂ)
7 0z 12622 . . . . . . 7 0 ∈ ℤ
8 fzsn 13603 . . . . . . 7 (0 ∈ ℤ → (0...0) = {0})
97, 8ax-mp 5 . . . . . 6 (0...0) = {0}
109eleq2i 2831 . . . . 5 (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0})
11 velsn 4647 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
1210, 11bitri 275 . . . 4 (𝑘 ∈ (0...0) ↔ 𝑘 = 0)
13 oveq2 7439 . . . . . 6 (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0))
1413adantl 481 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0))
156addridd 11459 . . . . . . 7 (𝜑 → (𝑋 + 0) = 𝑋)
1615, 5eqeltrd 2839 . . . . . 6 (𝜑 → (𝑋 + 0) ∈ 𝐴)
1716adantr 480 . . . . 5 ((𝜑𝑘 = 0) → (𝑋 + 0) ∈ 𝐴)
1814, 17eqeltrd 2839 . . . 4 ((𝜑𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴)
1912, 18sylan2b 594 . . 3 ((𝜑𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴)
202, 3, 4, 6, 19fwddifnval 36145 . 2 (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
2115fveq2d 6911 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹𝑋))
2221oveq2d 7447 . . . . . . . 8 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹𝑋)))
234, 5ffvelcdmd 7105 . . . . . . . . 9 (𝜑 → (𝐹𝑋) ∈ ℂ)
2423mullidd 11277 . . . . . . . 8 (𝜑 → (1 · (𝐹𝑋)) = (𝐹𝑋))
2522, 24eqtrd 2775 . . . . . . 7 (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹𝑋))
2625oveq2d 7447 . . . . . 6 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹𝑋)))
2726, 24eqtrd 2775 . . . . 5 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹𝑋))
2827, 23eqeltrd 2839 . . . 4 (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ)
29 oveq2 7439 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
30 bcnn 14348 . . . . . . . 8 (0 ∈ ℕ0 → (0C0) = 1)
311, 30ax-mp 5 . . . . . . 7 (0C0) = 1
3229, 31eqtrdi 2791 . . . . . 6 (𝑘 = 0 → (0C𝑘) = 1)
33 oveq2 7439 . . . . . . . . . 10 (𝑘 = 0 → (0 − 𝑘) = (0 − 0))
34 0m0e0 12384 . . . . . . . . . 10 (0 − 0) = 0
3533, 34eqtrdi 2791 . . . . . . . . 9 (𝑘 = 0 → (0 − 𝑘) = 0)
3635oveq2d 7447 . . . . . . . 8 (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0))
37 neg1cn 12378 . . . . . . . . 9 -1 ∈ ℂ
38 exp0 14103 . . . . . . . . 9 (-1 ∈ ℂ → (-1↑0) = 1)
3937, 38ax-mp 5 . . . . . . . 8 (-1↑0) = 1
4036, 39eqtrdi 2791 . . . . . . 7 (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1)
4113fveq2d 6911 . . . . . . 7 (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0)))
4240, 41oveq12d 7449 . . . . . 6 (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0))))
4332, 42oveq12d 7449 . . . . 5 (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4443fsum1 15780 . . . 4 ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
457, 28, 44sylancr 587 . . 3 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0)))))
4645, 27eqtrd 2775 . 2 (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹𝑋))
4720, 46eqtrd 2775 1 (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  {csn 4631  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  0cn0 12524  cz 12611  ...cfz 13544  cexp 14099  Ccbc 14338  Σcsu 15719  n cfwddifn 36142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-fwddifn 36143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator