| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fwddifn0 | Structured version Visualization version GIF version | ||
| Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
| Ref | Expression |
|---|---|
| fwddifn0.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| fwddifn0.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| fwddifn0.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fwddifn0 | ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12396 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | fwddifn0.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 4 | fwddifn0.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 5 | fwddifn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 3, 5 | sseldd 3935 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 0z 12479 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 8 | fzsn 13466 | . . . . . . 7 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (0...0) = {0} |
| 10 | 9 | eleq2i 2823 | . . . . 5 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0}) |
| 11 | velsn 4592 | . . . . 5 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 12 | 10, 11 | bitri 275 | . . . 4 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 = 0) |
| 13 | oveq2 7354 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0)) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0)) |
| 15 | 6 | addridd 11313 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
| 16 | 15, 5 | eqeltrd 2831 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 0) ∈ 𝐴) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 0) ∈ 𝐴) |
| 18 | 14, 17 | eqeltrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴) |
| 19 | 12, 18 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴) |
| 20 | 2, 3, 4, 6, 19 | fwddifnval 36203 | . 2 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 21 | 15 | fveq2d 6826 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹‘𝑋)) |
| 22 | 21 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹‘𝑋))) |
| 23 | 4, 5 | ffvelcdmd 7018 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
| 24 | 23 | mullidd 11130 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 25 | 22, 24 | eqtrd 2766 | . . . . . . 7 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹‘𝑋)) |
| 26 | 25 | oveq2d 7362 | . . . . . 6 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹‘𝑋))) |
| 27 | 26, 24 | eqtrd 2766 | . . . . 5 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹‘𝑋)) |
| 28 | 27, 23 | eqeltrd 2831 | . . . 4 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) |
| 29 | oveq2 7354 | . . . . . . 7 ⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) | |
| 30 | bcnn 14219 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → (0C0) = 1) | |
| 31 | 1, 30 | ax-mp 5 | . . . . . . 7 ⊢ (0C0) = 1 |
| 32 | 29, 31 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑘 = 0 → (0C𝑘) = 1) |
| 33 | oveq2 7354 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
| 34 | 0m0e0 12240 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
| 35 | 33, 34 | eqtrdi 2782 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
| 36 | 35 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0)) |
| 37 | neg1cn 12110 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 38 | exp0 13972 | . . . . . . . . 9 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (-1↑0) = 1 |
| 40 | 36, 39 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1) |
| 41 | 13 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0))) |
| 42 | 40, 41 | oveq12d 7364 | . . . . . 6 ⊢ (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0)))) |
| 43 | 32, 42 | oveq12d 7364 | . . . . 5 ⊢ (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 44 | 43 | fsum1 15654 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 45 | 7, 28, 44 | sylancr 587 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 46 | 45, 27 | eqtrd 2766 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹‘𝑋)) |
| 47 | 20, 46 | eqtrd 2766 | 1 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 {csn 4576 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 -cneg 11345 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 ↑cexp 13968 Ccbc 14209 Σcsu 15593 △n cfwddifn 36200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-fwddifn 36201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |