| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fwddifn0 | Structured version Visualization version GIF version | ||
| Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
| Ref | Expression |
|---|---|
| fwddifn0.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| fwddifn0.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| fwddifn0.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fwddifn0 | ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12516 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | fwddifn0.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 4 | fwddifn0.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 5 | fwddifn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 6 | 3, 5 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 7 | 0z 12599 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 8 | fzsn 13583 | . . . . . . 7 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (0...0) = {0} |
| 10 | 9 | eleq2i 2826 | . . . . 5 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0}) |
| 11 | velsn 4617 | . . . . 5 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
| 12 | 10, 11 | bitri 275 | . . . 4 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 = 0) |
| 13 | oveq2 7413 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0)) | |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0)) |
| 15 | 6 | addridd 11435 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
| 16 | 15, 5 | eqeltrd 2834 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 0) ∈ 𝐴) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 0) ∈ 𝐴) |
| 18 | 14, 17 | eqeltrd 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴) |
| 19 | 12, 18 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴) |
| 20 | 2, 3, 4, 6, 19 | fwddifnval 36181 | . 2 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))))) |
| 21 | 15 | fveq2d 6880 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹‘𝑋)) |
| 22 | 21 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹‘𝑋))) |
| 23 | 4, 5 | ffvelcdmd 7075 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
| 24 | 23 | mullidd 11253 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
| 25 | 22, 24 | eqtrd 2770 | . . . . . . 7 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹‘𝑋)) |
| 26 | 25 | oveq2d 7421 | . . . . . 6 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹‘𝑋))) |
| 27 | 26, 24 | eqtrd 2770 | . . . . 5 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹‘𝑋)) |
| 28 | 27, 23 | eqeltrd 2834 | . . . 4 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) |
| 29 | oveq2 7413 | . . . . . . 7 ⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) | |
| 30 | bcnn 14330 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → (0C0) = 1) | |
| 31 | 1, 30 | ax-mp 5 | . . . . . . 7 ⊢ (0C0) = 1 |
| 32 | 29, 31 | eqtrdi 2786 | . . . . . 6 ⊢ (𝑘 = 0 → (0C𝑘) = 1) |
| 33 | oveq2 7413 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
| 34 | 0m0e0 12360 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
| 35 | 33, 34 | eqtrdi 2786 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
| 36 | 35 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0)) |
| 37 | neg1cn 12354 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
| 38 | exp0 14083 | . . . . . . . . 9 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (-1↑0) = 1 |
| 40 | 36, 39 | eqtrdi 2786 | . . . . . . 7 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1) |
| 41 | 13 | fveq2d 6880 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0))) |
| 42 | 40, 41 | oveq12d 7423 | . . . . . 6 ⊢ (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0)))) |
| 43 | 32, 42 | oveq12d 7423 | . . . . 5 ⊢ (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 44 | 43 | fsum1 15763 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 45 | 7, 28, 44 | sylancr 587 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
| 46 | 45, 27 | eqtrd 2770 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹‘𝑋)) |
| 47 | 20, 46 | eqtrd 2770 | 1 ⊢ (𝜑 → ((0 △n 𝐹)‘𝑋) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 -cneg 11467 ℕ0cn0 12501 ℤcz 12588 ...cfz 13524 ↑cexp 14079 Ccbc 14320 Σcsu 15702 △n cfwddifn 36178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-fwddifn 36179 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |