| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ring1eq0 | Structured version Visualization version GIF version | ||
| Description: In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| 0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| 0ring1eq0 | ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 1 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3915 | . 2 ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing)) | |
| 2 | 0ringnnzr 20428 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 0ring.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 5 | 0ring01eq.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 6 | 3, 4, 5 | 0ring01eq 20432 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 0 = 1 ) |
| 7 | 6 | eqcomd 2735 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → 1 = 0 ) |
| 8 | 7 | ex 412 | . . . 4 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 → 1 = 0 )) |
| 9 | 2, 8 | sylbird 260 | . . 3 ⊢ (𝑅 ∈ Ring → (¬ 𝑅 ∈ NzRing → 1 = 0 )) |
| 10 | 9 | imp 406 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → 1 = 0 ) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 1 = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ‘cfv 6486 1c1 11029 ♯chash 14255 Basecbs 17138 0gc0g 17361 1rcur 20084 Ringcrg 20136 NzRingcnzr 20415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-nzr 20416 |
| This theorem is referenced by: c0rhm 20437 c0rnghm 20438 nrhmzr 20440 |
| Copyright terms: Public domain | W3C validator |